We have an exciting announcement about badges coming in May 2025. Until then, we will temporarily stop issuing new badges for course completions and certifications. However, all completions will be recorded and fulfilled after May 2025.
Materials

Materials

Topics related to Granta Design and more.

Nonlinear optical material design

    • Arun Jana
      Subscriber

      Hello,

      I want to design one material which permitivity(as a function of frequency) as well as ch2 property (not diagonal d33,d21,d22,d15 which depends on frequency) in lumerical FDTD( iam using 2024R2)  all data i want to give in one material how i will give? and i could not able to import material  data set also.

      Here i wrote in MATLAB code, which i want to design..

       
      % Define Frequency range in THz
      f1 = linspace(0, 10, 500)* (10^12); % in THz
      w = 2 * pi * f1;
      % Lorentz parameters (infrared and optical frequencies)
      omegap_e = [248 274 307 628 692] * 3 * 10^10; % phonon resonant frequency for e axis
      omegap_o = [152 236 265 322 363 431 586 670] * 3 * 10^10; % phonon resonant frequency for o axis
      S_e = [16 1 0.16 2.55 0.34]; % oscilator strength for e-axis
      S_o = [22 0.8 5.5 2.2 2.3 0.18 3.3 0.2];% oscilator strength for o-axis
      Gamma_e = [21 14 25 34 49] * 3 * 10^10; % phonon damping rate for e-axis
      Gamma_o = [14 12 12 11 33 12 35 47] * 3 * 10^10; % phonon damping rate for o-axis
      epsilon_p_e = 4.6; % high frefency permitivity limit for e axis
      epsilon_p_o = 5.0; % high frefency permitivity limit for o axis
      epsilon_Le = epsilon_p_e * ones(size(w)); % Initialize epsilon_L for e axis
      epsilon_Lo = epsilon_p_o * ones(size(w)); % Initialize epsilon_L for o axis
      % Lorentzian contributions for e axis
      for k1 = 1:length(omegap_e)
      epsilon_Le = epsilon_Le + (S_e(k1) * omegap_e(k1)^2) ./ ((omegap_e(k1)^2 - w.^2) - 1i * Gamma_e(k1) * w);
      end
      refractive_index_e=sqrt(epsilon_Le);
      n_e=refractive_index_e;
      E_er=real(epsilon_Le);
      E_ei=imag(epsilon_Le);
       
      % Lorentzian contributions for o axis
      for k2 = 1:length(omegap_o)
      epsilon_Lo = epsilon_Lo + (S_o(k2) * omegap_o(k2)^2) ./ ((omegap_o(k2)^2 - w.^2) - 1i * Gamma_o(k2) * w);
      end
      refractive_index_o=sqrt(epsilon_Lo);
      n_o=(refractive_index_o);
      E_or=real(epsilon_Lo);
      E_oi=imag(epsilon_Lo);
      % linear microwave susceptibility
      chi_e=n_e.^2-1;%% electronic contribution for e axis
      chi_o=n_o.^2-1;%% electronic contribution for o axis
      chi_ion_e=epsilon_Le-n_e.^2-1;% ionic contribution for e axis
      chi_ion_o=(epsilon_Lo)-(n_o).^2-1;% ionic contribution for e axis
      % Define constants for electronic and ionic parts
      delta_333_e = 0.6*10^-12;
      delta_222_e = 0.064*10^-12; 
      delta_311_e =0.18*10^-12; 
      delta_113_e = 0.31*10^-12; 
      delta_333_ion =0.304* 10^-12;
      delta_222_ion =0.0369* 10^-12; 
      delta_311_ion =0.167*10^-12; 
      delta_113_ion =0.41* 10^-12; 
      chi_1e=3.884;
      chi_3e=3.544;
      % Calculate Nonlinear coefficient components
      d33 = abs(delta_333_e * chi_e .* chi_3e .* chi_3e + delta_333_ion * chi_3e.* chi_3e .* chi_ion_e);
      d31 = abs(delta_311_e * chi_e .* chi_1e .* chi_1e + delta_311_ion * chi_1e .* chi_1e .* chi_ion_e);
      d15 = abs(delta_113_e * chi_o .* chi_1e .* chi_1e + delta_113_ion * chi_1e .* chi_1e .* chi_ion_o);
      %d15 = d31+(delta_113_e * chi_o.* chi_1e.*chi_3e + delta_113_ion * chi_3e .* chi_1e.* chi_ion_o);
      d22 = abs(delta_222_e * chi_o .* chi_3e .* chi_3e + delta_222_ion * chi_3e .* chi_3e .* chi_ion_o);
      figure;
      plot(w, d33, 'r', w, d31, 'b', w, d15, 'm', w, d22, 'k');
      legend('d_{33}', 'd_{31}', 'd_{15}', 'd_{22}');
      xlabel('Frequency(Hz)');
      ylabel('Nonlinear Coefficient(pm/V)');
      title('Nonlinear coefficient');
      grid on;
      % Plot w vs permitivity (real part)for e and o axis
      figure;
      plot(w, real(epsilon_Le), 'r', w, real(epsilon_Lo), 'b');
      legend('e-axis', 'o-axis')
      xlabel('Frequency (Hz)');
      ylabel('Re(\epsilon)');
      title('Real Permitivity');
      % Plot w vs imaginary part of permitivity for e and o axis
      figure;
      plot(w, imag(epsilon_Le), 'r', w, imag(epsilon_Lo), 'b');
      xlabel('Frequency (Hz)');
      legend('e-axis', 'o-axis')
      ylabel('Im(\epsilon)');
      title('Imaginary permitivity');
       
      please let me know .
      Thank you.
    • Guilin Sun
      Ansys Employee

      Unfortunately right now FDTD cannot simulate non-3*3 diagonal tensor nonlinear material.

      for frequency dependent nonlinear material, currently only  two

      Chi3 Raman Kerr

      Magnetic Electric Lorentz

      can be dispersive.

      For permittivity, you can simulate full 3*3 tensor with matrix tranformation: Creating anisotropic optical materials in FDTD and MODE

      If you want to simulate broadband, you will need to make sure that the unitary matrix does not depend on frequency.

       

Viewing 1 reply thread
  • The topic ‘Nonlinear optical material design’ is closed to new replies.