Materials

Materials

Topics relate to Granta Design and more

Nonlinear optical material design

    • Arun Jana
      Subscriber

      Hello,

      I want to design one material which permitivity(as a function of frequency) as well as ch2 property (not diagonal d33,d21,d22,d15 which depends on frequency) in lumerical FDTD( iam using 2024R2)  all data i want to give in one material how i will give? and i could not able to import material  data set also.

      Here i wrote in MATLAB code, which i want to design..

       
      % Define Frequency range in THz
      f1 = linspace(0, 10, 500)* (10^12); % in THz
      w = 2 * pi * f1;
      % Lorentz parameters (infrared and optical frequencies)
      omegap_e = [248 274 307 628 692] * 3 * 10^10; % phonon resonant frequency for e axis
      omegap_o = [152 236 265 322 363 431 586 670] * 3 * 10^10; % phonon resonant frequency for o axis
      S_e = [16 1 0.16 2.55 0.34]; % oscilator strength for e-axis
      S_o = [22 0.8 5.5 2.2 2.3 0.18 3.3 0.2];% oscilator strength for o-axis
      Gamma_e = [21 14 25 34 49] * 3 * 10^10; % phonon damping rate for e-axis
      Gamma_o = [14 12 12 11 33 12 35 47] * 3 * 10^10; % phonon damping rate for o-axis
      epsilon_p_e = 4.6; % high frefency permitivity limit for e axis
      epsilon_p_o = 5.0; % high frefency permitivity limit for o axis
      epsilon_Le = epsilon_p_e * ones(size(w)); % Initialize epsilon_L for e axis
      epsilon_Lo = epsilon_p_o * ones(size(w)); % Initialize epsilon_L for o axis
      % Lorentzian contributions for e axis
      for k1 = 1:length(omegap_e)
      epsilon_Le = epsilon_Le + (S_e(k1) * omegap_e(k1)^2) ./ ((omegap_e(k1)^2 - w.^2) - 1i * Gamma_e(k1) * w);
      end
      refractive_index_e=sqrt(epsilon_Le);
      n_e=refractive_index_e;
      E_er=real(epsilon_Le);
      E_ei=imag(epsilon_Le);
       
      % Lorentzian contributions for o axis
      for k2 = 1:length(omegap_o)
      epsilon_Lo = epsilon_Lo + (S_o(k2) * omegap_o(k2)^2) ./ ((omegap_o(k2)^2 - w.^2) - 1i * Gamma_o(k2) * w);
      end
      refractive_index_o=sqrt(epsilon_Lo);
      n_o=(refractive_index_o);
      E_or=real(epsilon_Lo);
      E_oi=imag(epsilon_Lo);
      % linear microwave susceptibility
      chi_e=n_e.^2-1;%% electronic contribution for e axis
      chi_o=n_o.^2-1;%% electronic contribution for o axis
      chi_ion_e=epsilon_Le-n_e.^2-1;% ionic contribution for e axis
      chi_ion_o=(epsilon_Lo)-(n_o).^2-1;% ionic contribution for e axis
      % Define constants for electronic and ionic parts
      delta_333_e = 0.6*10^-12;
      delta_222_e = 0.064*10^-12; 
      delta_311_e =0.18*10^-12; 
      delta_113_e = 0.31*10^-12; 
      delta_333_ion =0.304* 10^-12;
      delta_222_ion =0.0369* 10^-12; 
      delta_311_ion =0.167*10^-12; 
      delta_113_ion =0.41* 10^-12; 
      chi_1e=3.884;
      chi_3e=3.544;
      % Calculate Nonlinear coefficient components
      d33 = abs(delta_333_e * chi_e .* chi_3e .* chi_3e + delta_333_ion * chi_3e.* chi_3e .* chi_ion_e);
      d31 = abs(delta_311_e * chi_e .* chi_1e .* chi_1e + delta_311_ion * chi_1e .* chi_1e .* chi_ion_e);
      d15 = abs(delta_113_e * chi_o .* chi_1e .* chi_1e + delta_113_ion * chi_1e .* chi_1e .* chi_ion_o);
      %d15 = d31+(delta_113_e * chi_o.* chi_1e.*chi_3e + delta_113_ion * chi_3e .* chi_1e.* chi_ion_o);
      d22 = abs(delta_222_e * chi_o .* chi_3e .* chi_3e + delta_222_ion * chi_3e .* chi_3e .* chi_ion_o);
      figure;
      plot(w, d33, 'r', w, d31, 'b', w, d15, 'm', w, d22, 'k');
      legend('d_{33}', 'd_{31}', 'd_{15}', 'd_{22}');
      xlabel('Frequency(Hz)');
      ylabel('Nonlinear Coefficient(pm/V)');
      title('Nonlinear coefficient');
      grid on;
      % Plot w vs permitivity (real part)for e and o axis
      figure;
      plot(w, real(epsilon_Le), 'r', w, real(epsilon_Lo), 'b');
      legend('e-axis', 'o-axis')
      xlabel('Frequency (Hz)');
      ylabel('Re(\epsilon)');
      title('Real Permitivity');
      % Plot w vs imaginary part of permitivity for e and o axis
      figure;
      plot(w, imag(epsilon_Le), 'r', w, imag(epsilon_Lo), 'b');
      xlabel('Frequency (Hz)');
      legend('e-axis', 'o-axis')
      ylabel('Im(\epsilon)');
      title('Imaginary permitivity');
       
      please let me know .
      Thank you.
    • Guilin Sun
      Ansys Employee

      Unfortunately right now FDTD cannot simulate non-3*3 diagonal tensor nonlinear material.

      for frequency dependent nonlinear material, currently only  two

      Chi3 Raman Kerr

      Magnetic Electric Lorentz

      can be dispersive.

      For permittivity, you can simulate full 3*3 tensor with matrix tranformation: Creating anisotropic optical materials in FDTD and MODE

      If you want to simulate broadband, you will need to make sure that the unitary matrix does not depend on frequency.

       

Viewing 1 reply thread
  • You must be logged in to reply to this topic.