Fluids

Fluids

Topics related to Fluent, CFX, Turbogrid and more.

Mass flow inlet in Eulerian VOF model

    • daniela
      Subscriber

      Hey everyone, 


      I'm right now trying to simulate the inflow in a rainwater channel. Therefore I've chosen the Eulerian Multi Fluid model, with air as phase 1, water as phase 2. 


      As my boundary condition for the inlet I've chosen a mass flow inlet. I've set 0 kg/s for air and 12.5 kg/s for water with a volume fraction of 1. 


      I've done a initialization from the inlet and the velocity is generated correctly. After the calculation the post-processing shows a mass flow of max 6e-1 kg/s/m2 at the inlet instead of the set 12.5 kg/s (the area is about 0.088 m2, so it should be aroung 143 kg/s/m2). 


      Can anyone tell me how this is possible? Is it not possible to choose a mass flow inlet in a VOF model? Or could there be another reason? 


      Thanks in advance, 


       


      Regards. 


      Daniela

    • Amine Ben Hadj Ali
      Ansys Employee

      1/Is it 2D or 3D?


      2/How are you doing the post-processing?


      3/Can you confirm that you are using the Eulerian Model?


      Share screenshots of the models and of the boundary (bulk and phase) and post-processing.

    • Keyur Kanade
      Ansys Employee

      also please share screen shots of outlet boundary conditions, models used, other set up etc. 

    • daniela
      Subscriber

      General set up Models 1Models 2Cell Zone ConditionsBoundary 1Boundary 2Boundary 3Boundary outInitialization1Initialization2PatchPhasesRunPost with CFD Post

    • Amine Ben Hadj Ali
      Ansys Employee

      What you are now post-processing is just the mass-flux applied at the boundary. You can imagine that Fluent will scale your input of mass-flow at with facets at your inlet so you will see that variation: Fluent divide your 12 kg/s by the water density and total area of inlet to get the normal velocity. What you are now showing is this normal velocity times density divided by the facet area. More important to verify under Report that the mass flow rate for the mixture and water-phase is what you provided as a boundary condition. 

    • daniela
      Subscriber

      Thanks for the quick response! 


      I think I got the calculation of the flux and flow. But as my area of the inlet is only 0.088 m2, I was thinking of a flux of about 143 kg/s/m2. 


      I've attached the report in the bottom, but I didn't see any specifications on the mass flow there. 


       


      Thanks in advance, 


      best regards, 


      Daniela




      Fluent


      Version: 3d, pbns, eulerian, rngke, transient (3d, pressure-based, Eulerian, RNG k-epsilon, transient)


      Release: 19.2.0


      Title: 



       



       


      Models




       


         Model                              Settings                         


         



         Space                              3D                               


         Time                               Unsteady, 1st-Order Implicit     


         Viscous                            RNG k-epsilon turbulence model   


         Wall Treatment                     Standard Wall Functions          


         RNG Differential Viscosity Model   Disabled                         


         RNG Swirl Dominated Flow Option    Disabled                         


         Multiphase k-epsilon Models        Mixture k-epsilon                


         Heat Transfer                      Disabled                         


         Solidification and Melting         Disabled                         


         Species                            Disabled                         


         Coupled Dispersed Phase            Disabled                         


         NOx Pollutants                     Disabled                         


         SOx Pollutants                     Disabled                         


         Soot                               Disabled                         


         Mercury Pollutants                 Disabled                         


       



       



      Material Properties




       


         Material: water-liquid (fluid)


       


            Property                        Units     Method     Value(s)   


           



            Density                         kg/m3     constant   998.2      


            Cp (Specific Heat)              j/kg-k    constant   4182       


            Thermal Conductivity            w/m-k     constant   0.6        


            Viscosity                       kg/m-s    constant   0.001003   


            Molecular Weight                kg/kmol   constant   18.0152    


            Thermal Expansion Coefficient   1/k       constant   0          


            Speed of Sound                  m/s       none       #f         


       


         Material: air (fluid)


       


            Property                        Units     Method     Value(s)     


           



            Density                         kg/m3     constant   1.225        


            Cp (Specific Heat)              j/kg-k    constant   1006.43      


            Thermal Conductivity            w/m-k     constant   0.0242       


            Viscosity                       kg/m-s    constant   1.7894e-05   


            Molecular Weight                kg/kmol   constant   28.966       


            Thermal Expansion Coefficient   1/k       constant   0            


            Speed of Sound                  m/s       none       #f           


       


         Material: aluminum (solid)


       


            Property               Units    Method     Value(s)   


           



            Density                kg/m3    constant   2719       


            Cp (Specific Heat)     j/kg-k   constant   871        


            Thermal Conductivity   w/m-k    constant   202.4      


       



       



      Cell Zone Conditions




       


         Zones


       


            name                    id   type    


           



            negativgro--freeparts   3    fluid   


       


         Setup Conditions


       


            negativgro--freeparts


       


               Condition       Value   


               



               Frame Motion?   no      


               Mesh Motion?    no      


       



       



      Boundary Conditions




       


         Zones


       


            name                         id   type              


           



            inlet                        6    mass-flow-inlet   


            wall-negativgro--freeparts   1    wall              


            outlet                       7    pressure-outlet   


            wall1                        8    wall              


            wall2                        9    wall              


            wall3                        10   wall              


            wall4                        11   wall              


            wall5                        12   wall              


            wall6                        13   wall              


       


         Setup Conditions


       


            inlet


       


               Condition   Value   


               



       


            wall-negativgro--freeparts


       


               Condition     Value   


               



               Wall Motion   0       


       


            outlet


       


               Condition   Value   


               



       


            wall1


       


               Condition     Value   


               



               Wall Motion   0       


       


            wall2


       


               Condition     Value   


               



               Wall Motion   0       


       


            wall3


       


               Condition     Value   


               



               Wall Motion   0       


       


            wall4


       


               Condition     Value   


               



               Wall Motion   0       


       


            wall5


       


               Condition     Value   


               



               Wall Motion   0       


       


            wall6


       


               Condition     Value   


               



               Wall Motion   0       


       



       



      Solver Settings




       


         Equations


       


            Equation          Solved   


           



            Flow              yes      


            Volume Fraction   yes      


            Turbulence        yes      


       


         Numerics


       


            Numeric                         Enabled   


           



            Absolute Velocity Formulation   yes       


       


         Unsteady Calculation Parameters


       


                                                 


           



            Time Step (s)                   10   


            Max. Iterations Per Time Step   5    


       


         Relaxation


       


            Variable                     Relaxation Factor   


           



            Pressure                     0.3                 


            Density                      1                   


            Body Forces                  1                   


            Momentum                     0.7                 


            Volume Fraction              0.5                 


            Turbulent Kinetic Energy     0.8                 


            Turbulent Dissipation Rate   0.8                 


            Turbulent Viscosity          1                   


       


         Linear Solver


       


                                         Solver     Termination   Residual Reduction   


            Variable                     Type       Criterion     Tolerance            


           



            Pressure                     V-Cycle    0.1                                


            X-Momentum                   Flexible   0.1           0.7                  


            Y-Momentum                   Flexible   0.1           0.7                  


            Z-Momentum                   Flexible   0.1           0.7                  


            Volume Fraction              Flexible   0.1           0.7                  


            Turbulent Kinetic Energy     Flexible   0.1           0.7                  


            Turbulent Dissipation Rate   Flexible   0.1           0.7                  


       


         Pressure-Velocity Coupling


       


            Parameter   Value                  


           



            Type        Phase Coupled SIMPLE   


       


         Discretization Scheme


       


            Variable                     Scheme               


           



            Pressure                     Second Order         


            Momentum                     First Order Upwind   


            Volume Fraction              Compressive          


            Turbulent Kinetic Energy     First Order Upwind   


            Turbulent Dissipation Rate   First Order Upwind   


       


         Solution Limits


       


            Quantity                         Limit    


           



            Minimum Absolute Pressure        1        


            Maximum Absolute Pressure        5e+10    


            Minimum Temperature              1        


            Maximum Temperature              5000     


            Minimum Turb. Kinetic Energy     1e-14    


            Minimum Turb. Dissipation Rate   1e-20    


            Maximum Turb. Viscosity Ratio    100000   


       



       



       


       

    • Amine Ben Hadj Ali
      Ansys Employee
    • daniela
      Subscriber

      "mfr_air_inlet-rfile"


      "Time Step" "mfr_air_inlet etc.."


      ("Time Step" "mfr_air_inlet" "flow-time")


      0 0 0


      1 0 10


      2 0 20


      3 0 30


      4 0 40


      5 0 50


      6 0 60


      7 0 70


      8 0 80


      9 0 90


      10 0 100


      11 0 110


      12 0 120


      13 0 130


      14 0 140


      15 0 150


      16 0 160


      17 0 170


      18 0 180


      19 0 190


      20 0 200


       


       


      "mfr_mixture_inlet-rfile"


      "Time Step" "mfr_mixture_inlet etc.."


      ("Time Step" "mfr_mixture_inlet" "flow-time")


      0 12.49999999999998 0


      1 12.49999999999998 10


      2 12.49999999999998 20


      3 12.49999999999998 30


      4 12.49999999999998 40


      5 12.49999999999998 50


      6 12.49999999999998 60


      7 12.49999999999998 70


      8 12.49999999999998 80


      9 12.49999999999998 90


      10 12.49999999999998 100


      11 12.49999999999998 110


      12 12.49999999999998 120


      13 12.49999999999998 130


      14 12.49999999999998 140


      15 12.49999999999998 150


      16 12.49999999999998 160


      17 12.49999999999998 170


      18 12.49999999999998 180


      19 12.49999999999998 190


      20 12.49999999999998 200


       


       


      "mfr_water_inlet-rfile"


      "Time Step" "mfr_water_inlet etc.."


      ("Time Step" "mfr_water_inlet" "flow-time")


      0 12.49999999999998 0


      1 12.49999999999998 10


      2 12.49999999999998 20


      3 12.49999999999998 30


      4 12.49999999999998 40


      5 12.49999999999998 50


      6 12.49999999999998 60


      7 12.49999999999998 70


      8 12.49999999999998 80


      9 12.49999999999998 90


      10 12.49999999999998 100


      11 12.49999999999998 110


      12 12.49999999999998 120


      13 12.49999999999998 130


      14 12.49999999999998 140


      15 12.49999999999998 150


      16 12.49999999999998 160


      17 12.49999999999998 170


      18 12.49999999999998 180


      19 12.49999999999998 190


      20 12.49999999999998 200


       


       


      The flow rates seem to be correct (I've chosen different time steps now).  But the CFD Post is still showing the same for the flux. Is there any possibility to check the surface area in fluent? If I check it in DM it says 0.088 m2. And if I divide 12.5 kg/s by 0.088 m2, it should be 142 kg/s/m2, right? 


      Could be that I got this wrong somehow. 


      Best regards, 
      Daniela

    • Rob
      Forum Moderator

      In Fluent go to the Surface Integrals (Post Processing and/or Reports), one of those gives area. 

    • Amine Ben Hadj Ali
      Ansys Employee

      1/Is the contour plot from CFD-Post? Then please go to Calculators and make an area average of it at your Inlet


      2/Area inf Fluent: Reports>Surface Integral>Choose Area and then your boundary

    • daniela
      Subscriber

    • Amine Ben Hadj Ali
      Ansys Employee

      In CFD-Post make Area Integral of Mass Flow at the inlet. Does it fit your 12 kg/s?

    • daniela
      Subscriber


      No, it doesn't fit. Also if I choose global in z direction it's negative. 


      Thanks! 


      Best regards, 


      Daniela

    • Amine Ben Hadj Ali
      Ansys Employee

      Can you please go back to Fluent and check there 2. In Fluent I am not aware about such a variable called mass flow but with dimension of flux.


       


      Are you working with *.dat file in CFD-Post or with *.cdat file? Which version are you using?

    • daniela
      Subscriber

      In Fluent I can't find the variable mass flow. 


      I'm using version 19.2, and for CFD-Post it's *.cdat. 


      Best regards, 


      Daniela

    • Amine Ben Hadj Ali
      Ansys Employee

      Hi,


      That is what I've actually said: there is no variable called mass flow in Fluent. That is only what CFD-Post does understand when it comes into calculating mass flow based on mass flow variable. In multi-phase runs CFD-Post will try to calculate the integrated mass-flow (your input) based on that variable (which is kg/m^2s). Please build the sum of the variable "mass flow" in CFD-Post. I would say it would match the 12 kg/s.

    • Amine Ben Hadj Ali
      Ansys Employee

      There is no benefit for me to post-process this quantity. An integral report is better or getting contour of velocity and if compressible the density on the inlet is more appropriate. 

    • daniela
      Subscriber

      This fits. Thank you! 


      Then there's another thing I don't understand: If I have 12.5 kg/s of inflow and I did run the calculation for 200 s, how is it possible, that the water only reached the point in the graphics (the canal has a length of 1m, so 0.088 m3). With a inflow of 12.5 kg/s of water it should be 2500 kg (or liter) after 200s, which is way more than the volume of the canal. Might be, that I misunderstand the contour "volume fraction". 



      Thanks in advance, 


      best regards. 
      Daniela

    • Amine Ben Hadj Ali
      Ansys Employee

      Contour might be correct but as we do not have any idea about your model any comments will be only given by suspicion. We require some informations about your Case: Which boundaries are included and where? 


       


      From the plot it looks after a sort of open channel flow (?) where the water flow is sub-critical and that is why the height is decreasing. Check if you have an outlet if water reached that outlet. Moreover post screenshot of Fluent Residuals.


       


      It might be that water reached a level far away but due to coarse resolution the whole vof field is smeared..


       

    • daniela
      Subscriber

      Basically water is filled in an small open container and it should flow into another bigger container with open surface before getting into a pipeline. To model the open surface I've set atmospheric pressure at the top. 


      The big tank has a volume of 2.5 m3, that's why I'm only simulating 200s right now, because I just wanted to see how the water reaches the end of the big container. 


       


      I have already decreased the maximum of the volume fraction contour, but it still doesnt reach the end of the container or the pipe.


      Thanks. 


      Best regards, 


      Daniela  

    • Amine Ben Hadj Ali
      Ansys Employee
      1/Ensure deep convergence every time step. From residual plot your run is not looking as it should. Share with us settings in FLUENT.
      2/work with FLUENT post processing to avoid any issues.
    • Amine Ben Hadj Ali
      Ansys Employee

      Ensure gravity is set properly and free surface is set as symmetry or free slip wall. Include a air layer above water at inlet in case you want to use pressure boundary at top

    • daniela
      Subscriber

      Thanks! 


      Is there a way to ensure convergence or do I just have to increase the number of iterations? 


      Best regards. 

    • Amine Ben Hadj Ali
      Ansys Employee
      Rather smaller time step size and not more than max. of 20 iterations per time step.
      Post screenshot Of solution methods and operating conditions
    • daniela
      Subscriber

    • Amine Ben Hadj Ali
      Ansys Employee

      Please use VOF model with implicit volume fraction and give thai density as operating density. Eulerian model for this case is too complicated 

    • daniela
      Subscriber

      Okay. 


      Which density should I set as operating density? Water or air? 


      Best regards, 


      Daniela

    • Amine Ben Hadj Ali
      Ansys Employee
      Give air as first approximation
    • Amine Ben Hadj Ali
      Ansys Employee
      Check this
Viewing 28 reply threads
  • The topic ‘Mass flow inlet in Eulerian VOF model’ is closed to new replies.