-
-
October 16, 2024 at 6:48 amMaxSubscriber
Dear Experts,
I am trying to make 2-dimension UDF code for turbulent viscosity of the realizable k-e model. I want to ask about the expression term U*Â (See the attached figure).
I wonder what the eijk in the equation to estimate the mean rate-of -rotation is.
Since the mean rate-of rotation and the angular speed have unit 1/s. The eijk here should be the constant not the turbulent dissipation rate?
Thank you very much.
Here is the UDF code:
DEFINE_PROPERTY(tur_vis,c,t)
{
 real mu_tur;
 real S11, S12, S22, W12, W12r;
 real SMU, WAS, PHI, USTAR;
 real AS;
 real CMU, y, a1, a2, a3, a4, a5, a6, ;/***
 real betas=0.09;
 real A0=4.04;
 real rho=C_R(c,t);
 real k=C_K(c,t);
 real w=C_D(c,t);
 real CMUL=C_MU_L(c,t)
 real y=C_WALL_DIST(c,t);
 real S=C_STRAIN_RATE_MAG(c,t);/***
 S11=0.5*(C_DUDX(c,t)+C_DUDX(c,t));
 S12=0.5*(C_DUDY(c,t)+C_DVDX(c,t));
 S22=0.5*(C_DVDY(c,t)+C_DVDY(c,t));
 W12=0.5*(C_DVDX(c,t)-C_DUDY(c,t));/*** Cal vorticity with rotation ***/
 W12r=W12-wr*ce;/*** Cal U*  ***/
 USTAR=sqrt(S11*S11+2*S12*S12+S22*S22+W12r*W12r);
/*** Cal Phi ***/
 SMU=sqrt(S11*S11+2*S12*S12+S22*S22);
 WAS=(pow(S11,3)+pow(S22,3)+3*pow(S12,2)*(S11+S22))/pow(SMU,3);
 PHI=1/3*acos(sqrt(6)*WAS);/*** Cal As ***/
 AS = sqrt(6)*cos(PHI);/*** Cal CMU ***/
 CMU=1/(A0+AS*USTAR/betas/w);....
Â
-
December 11, 2024 at 11:43 amabhishek.royAnsys Employee
here eijk is a constantÂ
-
- You must be logged in to reply to this topic.
- Non-Intersected faces found for matching interface periodic-walls
- Help: About the expression of turbulent viscosity in Realizable k-e model
- Unburnt Hydrocarbons contour in ANSYS FORTE for sector mesh
- error udf
- Cyclone (Stairmand) simulation using RSM
- Diesel with Ammonia/Hydrogen blend combustion
- Mass Conservation Issue in Methane Pyrolysis Shock Tube Simulation
- Fluent fails with Intel MPI protocol on 2 nodes
- Encountering Error in Heterogeneous Surface Reaction
- Script Error
-
1156
-
488
-
486
-
225
-
201
© 2024 Copyright ANSYS, Inc. All rights reserved.