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Introduction 

 

Aeolian vibrations may cause fretting fatigue failure at or near the location of clamped devices 

(suspension clamps, dampers, spacers, etc.). The mitigation of these vibrations is thus a necessity to 

improve transmission lines reliability and life expectation. The most common way to control these 

vibrations is to install dampers on conductors. There is a need to develop numerical design tools for 

transmission line dampers. Before even assessing the behaviour of a damper-conductor system, the 

mechanical behaviour of the conductor itself needs to be modelled with sufficient precision. Models to 

describe the non linear variation of bending stiffness of conductors have been proposed [1, 2]. In a 

companion paper, Paradis and Légeron [3] developed an alternative model. Dastous [4] implemented 

the behaviour law of Papailiou [2] in a finite element model for the study of low-tension substation 

conductors. Guérard et al [5, 6] made dynamic tests on a cable bench to study specifically bending 

stiffness of conductors and developed a linear finite element model. Variable bending stiffness has not 

yet been implemented in a dynamic model for the study of aeolian vibrations. 

The objective of the present paper is to include variable bending stiffness in a time history finite 

element model. The deformed shape obtained is compared to the one measured during vibration tests 

on a short span (5.83 m) presented in a companion paper [7]. Three hypotheses for bending stiffness 

are studied: (i) linear bending stiffness equals to 50% of the theoretical maximum stiffness (EImax); (ii) 

non linear bending stiffness according to Papailiou [2]; (iii) non linear bending stiffness according to 

Paradis and Legeron [3] (hereafter named Paradis model). 

 
 
METHODOLOGY 
 
The open source finite element software Code Aster [8] was used in this study. In order to modify the 
bending stiffness of the conductor while keeping constant the axial stiffness, Euler beam elements and 
large displacement cable elements were superimposed. To model variable stiffness, four to six non 
linear beam elements and one cable element are actually placed at each mesh subdivision. 

 
Figure 1: Sketch of the numerical model. 



A sketch of the model is shown in figure 1. The model is excited at 0.33 m from the left end by a 
sinusoidal vertical force F with frequency ω corresponding to mode 3 of the cable. Displacements are 
recorded at the mid-span anti-node (ymax) and at five locations in the right-hand near field, including at 
89 mm from the right end (bending amplitude Yb). The model assumes that the translation and rotation 
at span ends is fully blocked in all directions. 
 
The model has a total 130 mesh subdivisions: 20 subdivisions of 8.9 mm each in the left near field, 40 
subdivisions of 8.9 mm in the right near field and 70 subdivisions of 75.7 mm in the free field. The 
mesh is hence more refined near supports, where curvature variations are more important. It was 
verified that further refinements in the near fields did not change the deformed shape. In order to 
predict the non linear response of the cable, a direct time integration method has been used. The 
integration scheme selected is Newmark-beta with β=0.25 and γ=0.5, therefore avoiding numerical 
damping. The damping ratio calculated from the experiments of Lévesque et al. [7] is included in the 
model through Rayleigh damping [9]. 
 
For models with linear bending stiffness, a time history of 12 seconds is calculated with a time step of 
1E-03 second. The frequency calculated theoretically is preferred to the experimental frequency to 
ensure that the mode is well developed. The amplitude of the force, which is constant with time, is 
found iteratively such that the experimental anti-node 0-peak displacement (ymax) is within 2% of the 
experimental value at the end of the 12-seconds time history. For linear calculations, for which the 
computation time is around 20 minutes (without post-processing), the root-finding algorithm called 
‘secant method’ is used to find the correct amplitude of force. 
 
For models with non linear bending stiffness, a time history of 12 seconds is calculated with a time 
step of 1E-04 second. The excitation frequency f (in Hz) is calculated theoretically with the bending 
stiffness equal to the initial bending stiffness (zero curvature) of the corresponding behaviour law (see 
figure 2 for example). To help convergence, the amplitude of the force varies between zero and the 
maximum force during the first 10 seconds of the time history. The force amplitude is then constant 
for the last two seconds in order to avoid transient effects. Again, the maximum force applied is found 
iteratively such that the experimental anti-node amplitude is reached. Each run takes between 20 and 
40 hours on an Intel Xeon 2.8 GHz computer. 
 
To model non linear bending stiffness, an elastic-perfectly-plastic behaviour for beam elements is 
used. First of all, an elastic beam element with bending stiffness equal to the minimum stiffness 
according to the behaviour law is defined. Second, a small number of elastic-perfectly-plastic beams 
 

Figure 2: Variable bending stiffness laws for Drake at 
tension 15% RTS. 

 Figure 3: Example of moment-curvature relation split 
by beam for test with Paradis stiffness. 
 



are superimposed to simulate the slippage of wires. Overall, the number of beams corresponds to the 
number of conductor layers. For Papailiou’s model, the maximum bending stiffness of each elastic-
plastic beam corresponds to the additional bending stiffness of a particular layer when it is in a 
sticking state as compared to the slipping state. For the model of Paradis, which has a slip criterion by 
wire rather than a slip criterion by layer, the parameters of each beam are adjusted such that the 
overall bending stiffness-curvature curve of the model best match the one of the theoretical behaviour 
law. Figure 2 shows the various relations between bending stiffness and curvature and Figure 3 shows 
the moment-curvature relation during a numerical test. The coefficient of friction considered in the 
calculation of variable bending stiffness is 0.5, as suggested by Papailiou [2]. 
 
 
RESULTS 

 
Tables 1 to 3 show the comparison between the experimental deformed shape of the vibrating Drake 
conductor and the simulated deformed shape for three distinct hypotheses for bending stiffness. The 
last five columns show the normalised deformed shape with respect with the experimental deformed 
shape. Due to convergence problems, the numerical tests for Papailiou behaviour law were done for 
bending amplitudes Yb=0.3mm and lower only. 
 
Table 1: Deformed shape for Drake conductor at tension H=15% RTS. 
Yb=0.1mm 

          

Stiffness f (Hz) F (N) 
Y45 

(mm) 
Yb 

 (mm) 
Y178 

(mm) 
Y267 

(mm) 
ymax 

(mm) 
Y/Yexp  

45 mm 
Y/Yexp  

89 mm 
Y/Yexp 

178 mm 
Y/Yexp 

267 mm 
y/yexp 
ventre 

Exp. 31.16 2.19 0.036 0.102 0.331 0.629 1.415 - - - - - 

Papailiou 34.88 38.00 0.041 0.143 0.429 0.773 1.423 1.16 1.40 1.30 1.23 1.01 

Paradis 33.51 5.50 0.025 0.092 0.314 0.614 1.443 0.70 0.90 0.95 0.98 1.02 

0.5EImax 32.54 4.00 0.026 0.095 0.327 0.637 1.409 0.73 0.93 0.99 1.01 1.00 

Yb=0.2mm 
          

Exp. 31.13 6.78 0.068 0.200 0.643 1.235 2.745 - - - - - 

Papailiou 34.90 155.00 0.128 0.363 0.964 1.635 2.711 1.88 1.82 1.50 1.32 0.99 

Paradis 33.53 19.50 0.052 0.188 0.635 1.223 2.729 0.76 0.94 0.99 0.99 0.99 

0.5EImax 32.55 7.30 0.050 0.186 0.637 1.238 2.742 0.74 0.93 0.99 1.00 1.00 

Yb=0.3mm 
          

Exp. 31.11 14.31 0.105 0.300 0.951 1.825 3.960 - - - - - 

Papailiou 34.90 340.00 0.251 0.694 1.729 2.822 3.999 2.39 2.31 1.82 1.55 1.01 

Paradis 33.53 66.00 0.095 0.321 1.016 1.900 4.000 0.90 1.07 1.07 1.04 1.01 

0.5EImax 32.56 18.35 0.072 0.266 0.913 1.774 3.934 0.68 0.89 0.96 0.97 0.99 

Yb=0.4mm 
          

Exp. 31.07 24.24 0.140 0.399 1.251 2.382 5.120 - - - - - 

Paradis 33.53 119.00 0.139 0.472 1.438 2.623 5.143 0.99 1.18 1.15 1.10 1.00 

0.5EImax 32.56 42.40 0.093 0.344 1.179 2.291 5.088 0.67 0.86 0.94 0.96 0.99 

Yb=0.5mm 
          

Exp. 31.07 35.54 0.177 0.501 1.553 2.940 6.140 - - - - - 

Paradis 33.56 162.50 0.176 0.604 1.822 3.281 6.169 0.99 1.21 1.17 1.12 1.00 

0.5EImax 32.59 76.30 0.111 0.411 1.408 2.734 6.078 0.63 0.82 0.91 0.93 0.99 

Yb=0.6mm 
          

Exp. 31.18 46.47 0.214 0.599 1.829 3.464 7.065 - - - - - 

Paradis 33.64 195.00 0.208 0.718 2.165 3.872 7.110 0.97 1.20 1.18 1.12 1.01 

0.5EImax 32.67 121.50 0.129 0.477 1.634 3.170 7.046 0.61 0.80 0.89 0.92 1.00 
 



Table 2: Deformed shape for Drake conductor at tension H=25% RTS. 
Yb=0.1mm 

            

Stiffness f (Hz) F (N) 
Y45 

(mm) 
Yb 

(mm) 
Y178 

(mm) 
Y267 

(mm) 
ymax 

(mm) 

Y/Yexp 

 45 
mm 

Y/Yexp 
 89 
mm 

Y/Yexp 178 
mm 

Y/Yexp 267 
mm 

y/yexp 
ventre 

Exp. 39.80 4.84 0.037 0.102 0.308 0.581 1.195 - - - - - 

Papailiou 42.17 4.00 0.021 0.077 0.266 0.520 1.203 0.58 0.76 0.86 0.89 1.01 

Paradis 41.22 2.85 0.023 0.083 0.284 0.550 1.204 0.62 0.81 0.92 0.95 1.01 

0.5EImax 40.15 8.93 0.026 0.093 0.310 0.588 1.173 0.70 0.91 1.01 1.01 0.98 

Yb=0.2mm 
            

Exp. 39.77 11.75 0.071 0.200 0.619 1.167 2.330 - - - - - 

Papailiou 42.14 61.00 0.066 0.223 0.667 1.207 2.340 0.92 1.12 1.08 1.03 1.00 

Paradis 41.18 14.00 0.048 0.173 0.575 1.099 2.351 0.68 0.87 0.93 0.94 1.01 

0.5EImax 40.12 14.70 0.052 0.187 0.624 1.183 2.364 0.73 0.94 1.01 1.01 1.01 

Yb=0.3mm 
            

Exp. 39.77 20.46 0.106 0.300 0.918 1.712 3.390 - - - - - 

Papailiou 42.09 135.00 0.147 0.429 1.158 1.986 3.363 1.39 1.43 1.26 1.16 0.99 

Paradis 41.13 30.00 0.074 0.266 0.878 1.658 3.435 0.70 0.89 0.96 0.97 1.01 

0.5EImax 40.06 17.30 0.074 0.270 0.900 1.706 3.413 0.70 0.90 0.98 1.00 1.01 

Yb=0.4mm 
            

Exp. 39.78 31.17 0.142 0.400 1.227 2.248 4.490 - - - - - 

Paradis 41.19 80.00 0.119 0.398 1.247 2.302 4.557 0.84 1.00 1.02 1.02 1.01 

0.5EImax 40.12 21.30 0.099 0.359 1.194 2.264 4.528 0.70 0.90 0.97 1.01 1.01 

Yb=0.5mm 
            

Exp. 39.78 43.04 0.177 0.500 1.515 2.735 5.415 - - - - - 

Paradis 41.23 120.00 0.152 0.500 1.518 2.763 5.304 0.86 1.00 1.00 1.01 0.98 

0.5EImax 40.16 32.80 0.119 0.430 1.432 2.713 5.431 0.67 0.86 0.95 0.99 1.00 

Yb=0.6mm 
            

Exp. 39.76 55.44 0.214 0.600 1.796 3.201 6.250 - - - - - 

Paradis 41.27 151.00 0.194 0.635 1.885 3.383 6.284 0.90 1.06 1.05 1.06 1.01 

0.5EImax 40.20 55.44 0.137 0.498 1.657 3.138 6.287 0.64 0.83 0.92 0.98 1.01 
 
 

 
Figure 4: Example of moment-curvature relation for Paradis model. 
 
 
 



Table 3: Deformed shape for Drake conductor at tension H=35% RTS. 
Yb=0.1mm 

            

Stiffness f (Hz) F (N) 
Y45 

(mm) 
Yb  

(mm) 
Y178 

(mm) 
Y267 

(mm) 
ymax 

(mm) 
Y/Yexp  

45 mm 

Y/Yexp 
 89 
mm 

Y/Yexp 178 
mm 

Y/Yexp 267 
mm 

y/yexp 
ventre 

Exp. 46.87 9.33 0.037 0.100 0.300 0.547 1.010 - - - - - 

Papailiou 48.89 2.90 0.019 0.071 0.242 0.467 1.005 0.52 0.71 0.81 0.85 1.00 

Paradis 48.13 2.70 0.021 0.077 0.259 0.493 1.010 0.57 0.77 0.86 0.90 1.00 

0.5EImax 47.06 13.80 0.025 0.090 0.291 0.540 1.002 0.68 0.90 0.97 0.99 0.99 

Yb=0.2mm 
            

Exp. 46.82 19.02 0.072 0.200 0.595 1.086 2.000 - - - - - 

Papailiou 48.83 28.80 0.052 0.171 0.530 0.988 2.008 0.72 0.85 0.89 0.91 1.00 

Paradis 48.08 6.80 0.042 0.151 0.505 0.962 1.971 0.58 0.76 0.85 0.89 0.99 

0.5EImax 47.01 28.40 0.049 0.175 0.569 1.056 1.960 0.68 0.88 0.96 0.97 0.98 

Yb=0.3mm 
            

Exp. 46.80 30.14 0.108 0.300 0.893 1.633 3.025 - - - - - 

Papailiou 48.79 90.00 0.098 0.324 0.944 1.678 3.056 0.91 1.08 1.06 1.03 1.01 

Paradis 48.04 20.00 0.070 0.248 0.805 1.510 3.010 0.65 0.83 0.90 0.92 1.00 

0.5EImax 46.97 34.37 0.075 0.267 0.868 1.612 2.996 0.69 0.89 0.97 0.99 0.99 

Yb=0.4mm 
            

Exp. 46.70 42.28 0.143 0.400 1.187 2.166 4.055 - - - - - 

Paradis 47.71 34.00 0.096 0.343 1.108 2.066 4.064 0.67 0.86 0.93 0.95 1.00 

0.5EImax 46.64 34.35 0.099 0.354 1.151 2.141 3.994 0.69 0.89 0.97 0.99 0.99 

Yb=0.5mm 
            

Exp. 46.74 55.84 0.180 0.500 1.475 2.689 5.005 - - - - - 

Paradis 47.89 53.00 0.125 0.442 1.417 2.627 5.084 0.70 0.88 0.96 0.98 1.02 

0.5EImax 46.82 37.85 0.124 0.443 1.437 2.670 4.975 0.69 0.89 0.97 0.99 0.99 

Yb=0.6mm 
            

Exp. 46.72 70.02 0.218 0.600 1.759 3.185 5.920 - - - - - 

Paradis 47.92 78.00 0.157 0.535 1.679 3.080 5.852 0.72 0.89 0.95 0.97 0.99 

0.5EImax 46.85 40.76 0.146 0.522 1.693 3.143 5.856 0.67 0.87 0.96 0.99 0.99 

 
Figure 4 shows the total moment-curvature obtained at various locations along the span. This type of 
graph allows defining the level and extent of sliding predicted by variable stiffness models. The 
dissection of the Drake specimens in Lévesque et al. [7] showed that sliding was observed up to 160 
mm from the clamp. By comparison, the numerical tests with the model of Paradis showed some 
sliding up to 230 mm from the clamp.   
 

 

ANALYSIS 

 

Excitation Force 
 
Because the modelled system is very sensitive, it was not possible to obtain the wanted level of 
vibration by simply applying the experimental excitation force and frequency. Having theoretically 
calculated the frequency, the force is then found with an iterative process. It is interesting to analyze 
how different the final force is from the experimental force. The excitation force required for each 
numerical test is found in Tables 1 to 3. For tests with 0.5EImax, the force is generally similar to the 
experimental value. For the non linear models, it is expected that the force is higher than the 
experimental force because the non linearity creates a hysteresis that dissipates energy. This adds to 



the energy dissipation caused by the Rayleigh damping which is calculated to be equal to the total 
energy dissipation in the experiment. The fact that the force required for the tests with Papailiou’s law 
is much higher than the experimental force indicates that the model of Papailiou overestimates the 
area within the hysteresis. This, in turn, indicates that the bending stiffness variation during vibration 
cycles is overestimated with the model of Papailiou. The model of Paradis, in which the bending 
stiffness never reaches the maximum and minimum theoretical values, hence appears to be more 
realistic.    
 
Deformed Shape 
 
As shown in figure 5, the peak-to-peak displacement at 45 mm and 89 mm from the clamp is smaller 
than the experimental displacement when assuming a constant bending stiffness of 0.5EImax. The 
normalised displacement near the clamp generally decreases with increasing level of vibration. This 
last phenomenon is less important for higher conductor tension. These observations are in agreement 
with the theoretical behaviour of cables when considering variable bending stiffness.  
 
In figure 6, a comparison between the deformed shapes at 15% RTS for the two variable bending 
stiffness models is made. This graph clearly shows that the model of Paradis is more adequate to 
predict the deformed shape of vibrating conductors than the model of Papailiou. When looking at 
tables 2 and 3, it appears that the model of Papailiou gives on average adequate predictions for higher 
tensions. However, the dispersion of results is overall very large for this model when compared to the 
model of Paradis. Papailiou’s behaviour law generally overestimates the variation of bending stiffness 
in vibrating conductors. 
 
Figure 7 shows how the deformed shape near the clamp evolves with increasing level of vibration for 
the numerical tests with Paradis bending stiffness. For large amplitudes of vibration, the 
displacements at 89, 133, 178 and 267 mm are overestimated. Hence, even if the variation of bending 
stiffness is less important for the model of Paradis than for the model of Papailiou, it is still too 
sensitive to curvature variation. In summary, when comparing with the results of figure 5, it appears 
that whereas the model of Paradis allows predicting correctly the trends of bending stiffness variation, 
the results are not more accurate than using a constant bending stiffness of 0.5EImax. The 
displacements for 0.5EImax are close to the values predicted by the Paradis model for low curvature. 
The statistics for the bending amplitude Yb at 89 mm from the clamp are shown in Table 4. 
 
 

Figure 5: Normalised deformed shape with bending 
stiffness 0.5EImax. 
 

 
Figure 6: Comparison of deformed shape with bending 
stiffness Papailiou and Paradis. 



Figure 7: Normalised deformed shape with bending 
stiffness Paradis. 

Figure 8: Normalised deformed shape with and without 
rotational flexibility at the clamp. 

 
Table 4: Statistics for normalised displacements at 89 mm from the clamp. 

Model Mean Standard deviation 
Papailiou 1.28 0.53 
Paradis 0.95 0.14 
0.5EImax 0.88 0.04 

 
Another observation that can be drawn from figures 5 and 7 is that the displacement at 45 mm for low 
amplitude of vibration is always smaller than the experimental displacement. It seems that this 
apparent reduction of bending stiffness very close to the clamp is not linked to curvature variation and 
therefore cannot be predicted by theoretical bending stiffness models. As discussed in Lévesque et al. 
[7], many hypotheses could be raised to explain this phenomenon. In any case, the model could be 
adjusted to take into account these boundary conditions effects. In figure 8, two of the constant 
stiffness numerical tests were repeated but with a rotational spring at the clamp with stiffness value 
equals to 1.15E05 Nm2. This value of stiffness is arbitrary but was applied to both tests to ensure that 
the flexibility at the clamp is a characteristic of the system. These two tests show results much closer 
to the experimental values. 
 
 
CONCLUSIONS 

 
In this paper, variable bending stiffness models were implemented in a dynamic finite element model 
for the study of the deformed shape of vibrating conductors. The following conclusions can be drawn 
from this study: 
 

- The model of Paradis shows less dispersion in the prediction of conductor deformed shape 
than the model of Papailiou. 

- The model of Paradis correctly predicts the trends of bending stiffness variation but is not 
more accurate than a constant bending stiffness of 0.5EImax. 

- The variation of bending stiffness is in general less important than what is predicted by both 
non linear models.  

- Some of the apparent bending stiffness variation observed experimentally may be due to 
boundary conditions effects and is independent of curvature variation. 

 
Additional validation in both static and dynamic regimes would be required to successfully integrate 
theoretical bending stiffness models in the study of aeolian vibrations. The effect of boundary 



conditions on the deformed shape of conductors near the clamp would need to be studied for both 
rigid and standard transmission line clamps, as well as new types of clamps. 
 
Overall, it appears that using constant bending stiffness is adequate for modeling the deformed shape 
of vibrating conductors. This assumption may however be inaccurate for other applications such as the 
study of the kinematics in the near field for the determination of contact stresses involved with fretting 
fatigue. For such applications, it would be interesting to continue the work on theoretical bending 
stiffness models of cables and most importantly, to validate the models experimentally. 
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