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Abstract—A finite element analysis of the electromigration 
process in metal interconnects can now be performed using the 
ANSYS program. The analysis is based on the model that 
includes all the driving forces of electromigration—diffusion 
gradient, electric current, stress, and temperature gradients. 
The electromigration model is implemented in the framework 
of 2-D and 3-D coupled-field elements. Diffusion, electric, 
structural, and thermal degrees of freedom are fully (matrix)
coupled and solved for simultaneously. Matrix coupling 
ensures robust convergence of the highly nonlinear 
electromigration analysis. The finite element solution is 
validated using 1-D analytical and numerical models of the 
electromigration process in metal lines. A model of a solder 
joint illustrates a 3-D electromigration analysis.

Keywords- finite elements; electromigration; diffusion; stress
migration; thermomigration; reliability

I. INTRODUCTION

Electromigration is the process of mass transport in metal 
interconnects induced by high density electric currents. Two 
types of electric forces initiate atomic migration in metals: 
(1) electrostatic force acting on the atom in the direction of 
the electric field and (2) collision force, or momentum 
exchange, between the atoms and the electrons drifting in the 
direction opposite to the electric field. Although these forces 
are the cause of electromigration, they alone do not drive the 
atomic transport. Intense electric currents in interconnects 
are accompanied by the gradients of atomic concentration, 
mechanical stress, and temperature. These gradients become
the driving forces of mass transport along with the electric 
current. Gradual displacement of metal atoms from their 
positions in the lattice can result in macroscopic mass 
depletion or mass accumulation. Over time, voids or hillocks 
can form, eventually leading to interconnect failure in the 
form of an open or short circuit.

Electromigration is a leading failure mechanism in
integrated circuits (ICs) where current densities are high due 
to miniaturization and use of thin film conductors. As such, it 
has been a focus of intense experimental study and numerical 
simulation. Accurate numerical models of electromigration 
can complement laboratory testing by predicting the 
reliability of IC interconnects in terms of their time-to-failure 
(TTF). Such models should address the complex interactions 
between diffusion, electric, thermal, and mechanical forces 
and fields taking place in the interconnects. Ideally, other 
factors affecting the electromigration process should also be 

taken into consideration. These include void nucleation and 
growth in metal lines, formation of intermetallic compounds 
(IMC) in solder bumps, and the effect of the metal’s 
microstructure. To calculate the TTF, failure criteria related 
to either void concentration, hydrostatic stress, or divergence 
of diffusion flux also need to be established.

One-dimensional (1-D) analytical and numerical models
of vacancy and stress evolution have been used to predict the 
TTF of confined aluminum lines [1-3]. However, simulating 
the damage caused by electromigration in more complex 
interconnects would require a three-dimensional (3-D) 
numerical model. The finite-element (FE) method is a 
natural choice for such advanced models as it can easily 
handle arbitrary 3-D geometries, multiple physics, and 
various loads and boundary conditions, and it can be adapted 
to coupled-field and highly nonlinear constitutive models. 
The FE method has already been applied to the simulation of 
electromigration in solder joints [4], through-silicon vias 
(TSVs) [5], copper dual-damascene structures [6], and 
standard wafer electromigration accelerated test (SWEAT) 
structures [7]. In most cases, a commercial finite element 
package has been adapted or customized to handle a version 
of the electromigration model.

The ANSYS finite element program has been routinely 
used to simulate electronic packaging; for example, to 
predict mechanical reliability of solder joints, thermal 
cycling reliability of flip chip interconnects, and moisture 
related reliability of mold compounds. In response to the 
increased demand for electromigration reliability simulation, 
ANSYS coupled-physics capabilities have been extended to 
support an electromigration analysis in metal interconnects. 
This paper proposes a general finite element model of the 
electromigration process driven by diffusion, electric current, 
stress gradient, and temperature gradient. Implementation 
details are presented and illustrated with several numerical 
examples.

II. GOVERNING EQUATIONS

It is generally accepted that atomic migration in metal 
interconnects is driven by the electric current (electrostatic 
force and electron wind) and by the gradients of atomic 
concentration (diffusion proper), hydrostatic stress (stress-
migration), and temperature (thermo-migration). To include 
these driving forces in the electromigration model, the first 
Fick’s law of diffusion describing atomic flux Ja is written in 
the form:
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where [D] is the atomic diffusivity matrix, k is Boltzmann’s 
constant, T is the absolute temperature, and μ is the 
generalized chemical potential derived from atomic 
concentration C, electric potential φ, hydrostatic stress σH,
and temperature T as shown in Table I.

TABLE I. DRIVING FORCES OF ELECTROMIGRATION

Process Chemical 
Potential µ

Force F=-��μ Flux J=(D/kT)cF

Diffusion kTlnC -kT�C/C -D�C
Electro-

migration
Z*eφ -Z*e�φ -(D/kT)CZ*e�φ

Stress-
migration

-ΩσH Ω�σH (D/kT)CΩ�σH

Thermo-
migration

(Q/T)T -(Q/T) �T -(D/kT2)CQ�T

Substituting the driving forces from Table I in (1), the 
total atomic flux of electromigration can be written as:
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where Z* is the effective charge number of the atom that 
combines the effects of the electrostatic and the electron 
wind forces, e is the elementary charge, Ω is the atomic 
volume, and Q is the heat of atomic transport. The 
hydrostatic stress is defined as the average of principal 
stresses σH = (σ11+ σ22+ σ33)/3 = tr(σii)/3, where tr denotes the 
trace operator.

The constitutive relation for the atomic flux (2) couples 
the atomic concentration with the electric potential, 
mechanical stress, and temperature. Therefore, in an 
electromigration analysis the mass balance equation, or 
second Fick’s law, that controls the change of atomic 
concentration over time:

g
t
C

a ����	



 J , (3)

where g� is the atom generation rate per unit volume, must be 
solved together with the electric charge conservation
equation, the heat transfer equation, and Newton’s second 
law as shown below. 

Electric Charge Conservation:

0��� j , (4)

where j is the electric current density.

Heat Transfer:

q
t
Tc ����	



 q� , (5)

where ρ is the mass density, c is specific heat, q is the heat 
flux vector, and q� is the heat generation rate per unit 
volume.

Newton’s second law:
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2
, (6)

where u is the displacement vector, ς is the damping
coefficient, and f is the force load vector. 

Note that (4) was written without the displacement 
current term as the latter is insignificant in metals. Also, for 
electromigration applications, the dynamic terms in (6) can 
be ignored.

To complete the system of governing equations, 
constitutive relations for the electric current density j,
mechanical stress σ, and thermal flux q should be considered 
along with (1). These constitutive relations can include 
multiple coupled-field effects [8], but only those relevant to 
the process of electromigration are considered here:

� �Ej 
� , (7)

where [σ] is the electric conductivity matrix and ����E is
the electric field;

� � elc εσ � , (8)

where [c] is the elasticity matrix and ��el is the elastic strain 
vector; and

� � Tk ��q , (9)

where [k] is the thermal conductivity matrix. 
Equations (7) and (9) imply that atomic diffusion does 

not contribute to the electric current density j or thermal flux 
q. In other words, the electric current of migrating atoms and 
the heat of diffusion (Dufour effect) are ignored in the 
electromigration model.

The elastic strain in (3) can be derived from the total 
strain � = �u by subtracting all the non-elastic types of 
stain:

...����� dithplel εεεεε , (10)

where �pl, �th, �di are the plastic, thermal expansion, and 
diffusion expansion strains, respectively. By analogy with 
thermal strain, 
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� �� � � � TTT ref
th ���� ��ε , (11)

where {�} is the vector of coefficients of thermal expansion 
and Tref is the reference temperature for the thermal strain 
calculation, the diffusion strain is defined as follows:

� �� � � � CCC ref
di ���� ��ε , (12)

where {�} is the vector of coefficients of diffusion expansion 
and Cref is the reference concentration for the diffusion strain 
calculation. Retaining only those strains in (10) needed for 
coupling with the atomic flux, we obtain the following 
equation for stress:

� � � � � �� �CTc ������ ��uσ . (13)

Substituting (13) into (2) reveals a complex dependence of 
atomic flux on concentration, electric potential, temperature, 
and mechanical deformation:
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Equation (14) shows that diffusion expansion contributes to 
the diffusion driving force (backflow), and the thermal 
expansion contributes to the thermomigration driving force.

In addition to constitutive relations, the equations 
governing the process of electromigration are coupled by 
Joule heat generation:

Ej��Jq� (15)

and through the temperature dependence of the material 
properties.

III. FINITE ELEMENT FORMULATION

Following the finite element discretization of the 
problem domain, the unknown concentration C, electric 
potential φ, components ui of the mechanical displacement 
vector u = {u1, u2, u3}T, and temperature T are approximated 
over the finite element as:

eCC �� N , (16)

e�� �� N , (17)

 uu iei ,�� N (18)

eTT �� N , (19)

where N is the vector of element shape functions, Ce is the 
vector of nodal concentrations, φe is the vector of nodal 
electric potentials, Te is the vector of nodal temperatures, 
and ue is the vector of nodal mechanical displacements. The 
system of finite element equations can be obtained by 
applying the Galerkin method of weighted residuals to the 
governing equations of electromigration discussed in the 
previous section:
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(20)

where the element matrices and load vectors are calculated 
by numerical integration over the element volume V as 
follows:

+�
V

CC dVC NN - diffusion damping matrix,

+�
V

TT dVcC NN� - specific heat matrix,

� �
+



��


�
V

a
CC dV

C
K

J - diffusivity matrix

� �+ �����
V

dVK NN 
�� - electric conductivity matrix,

� �+ ���
V

uu dVcK BB - elastic stiffness matrix, and B is 

the strain –displacement matrix,
� �+ �����

V
TT dVkK NN - thermal conductivity matrix,

� � � �+ �����
V

uT dVcK NB � - thermal strain matrix,

� � � �+ �����
V

uC dVcK NB � - diffusion strain matrix,

� �
+
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�
V

a
C dVK

��
J - electric migration matrix,

� �
+
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�
V

a
Cu dVK

u
J - mechanical migration matrix,

� �
+



��


�
V

a
CT dV

T
K

J - thermal migration matrix,
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+ ��
V

J dVQ ENJ - Joule heat load vector.

Terms G, I, Q, F are the atom generation rate, electric 
current, heat generation rate, and the mechanical force load 
vectors, respectively. 

The matrices KCC, KCφ, KCu, and KCT above are given in a 
symbolic form as their derivation is too involved. Full 
expressions for these matrices are obtained by 
differentiating the atomic flux (14) divergence aJ�� with 
respect to the concentration C, electric potential φ,
mechanical displacement u, and temperature T. The 
derivation of matrices is detailed here for the simple case 
when the atomic transport is driven by the electric field 
alone. In this case (14) reduces to:

� � � � ������
kT

eCZDCDa

*
J , (21)

and matrices KCφ and KCC are expressed using the element 
shape functions as:
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Therefore, in the finite element formulation, the electric 
driving force is represented by matrix KCφ (22) that couples 
the element nodal concentrations Ce and electric potentials 
φe, and by the electric field (E) dependent term of the 
diffusion matrix KCC (23). Matrices KCu and KCT are derived 
analogously to KCφ in (22). Matrix KCC gets more terms 
similar to the second part of (23) as a result of the 
differentiation of aJ�� with respect to C.

The finite element system (20) is nonsymmetric and 
nonlinear. Its solution yields concentrations Ce, electric 
potentials φe, displacements ue, and temperatures Te at the 
unconstrained element nodes. The nodal solution can be 
post-processed to calculate the gradient of concentration 
�C, electric field E, total strain ��, and the gradient of 
temperature as follows:

eCC ���� N , (24)

e����� NE , (25)

uBε �� , (26)

eTT ���� N . (27)

The values of atomic flux Ja (14), electric current density j
(7), mechanical stress σ (13), and heat flux q (9) can then be 
calculated using (24)-(27).

IV. FINITE ELEMENT IMPLEMENTATION

Electromigration analysis is available with the ANSYS 
family of coupled-field elements: PLANE223 (8-node 
quadrilateral), SOLID226 (20-node hexahedron), and 
SOLID227 (10-node tetrahedron) [9]. These elements were 
designed to solve 2-D and 3-D multiphysics problems in 
one single solution; that is, by using a single mesh of 
coupled-field elements, applying the relevant material 
properties and boundary conditions to one model, solving 
for all the degrees of freedom (DOFs) simultaneously, and 
post-processing one set of results. 

Each element supports multiple DOFs per node, 
including concentration, electric potential, mechanical 
displacements, and temperature needed to model the process 
of electromigration. These DOFs can be turned on and off 
depending on the combination of physics needed for the 
analysis. For example, to calculate the evolution of atomic 
concentration as a function of electric current only, it is 
sufficient to select a diffusion-electric combination of 
DOFs. If stress evolution is of interest, a diffusion-electric-
structural analysis option can be used. Thermal effects can 
be activated by adding the temperature DOF to the analysis. 
It should be noted, however, that the more DOFs per node 
that are active, the larger the model and the higher the 
memory and computational time requirements. The 
combination of diffusion, electric, structural, and thermal 
degrees of freedom is also supported by 2-D (CONTA171, 
CONTA172) and 3-D (CONTA173, CONTA174) contact 
elements that can be used to connect dissimilar meshes or 
model imperfect contact.

The electromigration analysis is inherently nonlinear due 
to the dependency of its driving forces and material 
properties on temperature and concentration. Other material 
and geometric nonlinearities may be incorporated in the 
analysis. Therefore, the analysis requires an iterative 
solution using the Newton-Raphson method. Nonlinear 
solution convergence is robust due to the matrix coupling 
between the element DOFs in (20). A nonlinear solution 
also implies that the electromigration analysis can be 
steady-state or time-transient.

Material definition for the migration model includes the 
input of parameters controlling the atomic flux (2) and the 
input of material properties associated with the constitutive 
relations (7), (8), (9), (11) and (12). The effective charge 
number, atomic volume, and heat of transport are scaled 
with respect to the Boltzmann constant k and input as Z*e/k,
Ω/k, and Q/k using a special migration model [10]. The 
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same model is also used to input the activation energy Ea/k
for the temperature dependent diffusivity 
coefficient )/exp(0 kTEDD a�� . To accommodate the 
applications where concentration is measured in moles, the 
same parameters can be input as Z*F/R, Ω/R, Q/R, and Ea/R,
where R is the universal gas constant, F is the Faraday 
constant, and Ω and Q are the molar volume and molar heat 
of transport, respectively. The matrices of diffusivity [D], 
electrical resistivity [ρ]= [σ]-1, elasticity [c], and thermal 
conductivity [k], as well as the vectors of thermal ({α}) and 
diffusion ({β}) expansion coefficients are defined as 
orthotropic material properties by their components in the x,
y, z directions. Mass density ρ, specific heat c, as well as 
reference temperature Tref and concentration Cref, are input 
as scalar material properties. 

The migration model distinguishes between atomic and 
vacancy fluxes. The differences between the two 
constitutive models are summarized in Tables II and III.

TABLE II. ATOMIC MIGRATION MODEL

Flux � � � � � � � � T
kT

CQD
kT
CD

kT
eCZDCD Ha ���

�
		���

2

*

EJ

Electric field Ja opposite to E (Z* < 0)
Stress gradient Ja along �σH

Volume 
Change 

εdi = {β}∆C
Expansion (β > 0)

TABLE III. VACANCY MIGRATION MODEL

Flux � � � � � � � � T
kT

CQD
kT
CfD

kT
eCZDCD Hv ���

�
�	���

2

*

EJ

Electric field Jv along E (Z* > 0)
Stress gradient Jv opposite to �σH

Volume 
change 

εdi = {β}∆C
Contraction (β < 0)

The fact that the atoms migrate in the direction of the 
electron wind, that is, opposite to the electric field E, while 
the vacancies migrate in the direction of the electric field is 
reflected in the sign of the effective charge number Z*,
which is negative for atomic electromigration and positive 
for vacancy electromigration. Also, vacancies migrate in the 
direction opposite to the gradient of hydrostatic stress 
because the effective volume of a vacancy fΩ (0 < f < 1) is 
smaller than the volume of the atom it replaces [11], thus 
causing relaxation of the neighboring atoms and contraction 
of the volume εdi = {�}∆C (� < 0). While the signs of the 
driving forces are embedded in the FE formulation, it is the 
user’s responsibility to assign a correct sign to the charge 
number Z* and to the expansion coefficient �.

Since the electromigration analysis was developed based 
upon the existing structural-thermal, structural-diffusion, 
and thermo-electric capabilities of the coupled-field 
elements, it inherited the material models, loads, and 
coupled-field effects applicable to a given combination of 
DOFs. For example, structural rate-dependent plasticity 
models (e.g., Anand viscoplasticity) can be used together 

with the electromigration model to perform a reliability 
analysis of a solder joint. All types of diffusion, electric, 
structural, and thermal loads available with the ANSYS 
program are also available with the electromigration 
analysis. Coupled-field capabilities such as piezoresistivity 
or thermoplastic effect can be superimposed on 
electromigration.

In the present FE electromigration analysis, material 
properties and loads can be functions of time (t), position (x,
y, z), temperature (T), concentration (C), and hydrostatic 
stress (σH). This feature currently applies to the coefficients 
of diffusivity [D], electrical resistivity [ρ], and diffusion 
expansion {β}. Reference (equilibrium) concentration Cref,
and diffusion loads (surface flux and generation rate) can 
also be functions of these state variables. This capability can 
be used to customize the constitutive relations or loads, to 
define failure criteria, or to specify a non-uniform material 
distribution. As examples, consider the following potential
applications:

, The dependence of electrical resistivity on 
concentration [ρ(C)] can be used to simulate electric 
failure due to void formation.

, Spatially dependent diffusivity [D(x,y,z)] can be used 
to define electromigration paths along the metal 
grain boundaries.

, A concentration dependent generation rate G(C) can 
be used to define the source term � � seCCG -/���
[2] that describes the annihilation or generation of 
vacancies.

Some of these dependencies were used in the examples 
presented in the following sections.

V. TRANSIENT ANALYSIS OF A METAL LINE

The electromigration analysis was first applied to 1-D
models of thin and narrow aluminum interconnect lines
considered in [1-3]. This simple configuration served to 
validate the analysis and to illustrate some important aspects 
of our electromigration model. Unless otherwise stated, the 
following parameters for the aluminum line from [3] were 
used in the numerical examples:

, Line length L = 50 μm,
, Current density Je = 1MA/cm2,
, Temperature T = 200 ºC,
, Atomic diffusivity coefficient Da = 3e-16 m2/s,
, Electric driving force S = EZ*e/kT = 0.04/μm,
, Charge number |Z*| = 4,
, Bulk modulus B = 50 GPa,
, Stress gradient G = EZ*e/Ω = 16.5 MPa/μm.

The electrical resistance ρ = 4.079e-8 Ohm·m was derived 
from the electric driving force S and the current density Je =
ρE. Similarly, the atomic volume Ω = 0.989e-29 m3 was
derived from the value of stress gradient G to obtain the 
stress results comparable to those in [3]. 

Because the metal line is embedded in a thick rigid 
dielectric passivation layer, the line confinement implies the 
following boundary conditions:
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, The atomic flux is blocked at both ends: 0�aJ at
0�x and Lx � .

, The volume of the conductor is not permitted to 
change; i.e., the mechanical deformation is 
zero: 0�� yx uu .

The model is meshed with the PLANE223 coupled-field 
elements. In the first set of numerical tests, the 
electromigration analysis was driven by the electric field 
alone. Active DOFs were concentration C and electric 
potential φ. The atomic flux option was used with the 
migration model. A transient analysis for the time duration of 
1e7 seconds was performed to simulate the concentration 
buildup at the blocking boundaries. Numerical results for the 
normalized concentration were analogous to those reported 
by Clement and Lloyd [1] for various conductor lengths L.
Results for various values of the electric current density J
and the diffusivity coefficient D are presented in Fig. 1 and 
Fig. 2, respectively.

Figure 1. Atomic concentration buildup at x = L for two different current 
densities J1 and J2.

Figure 2. Atomic concentration buildup at x = L for two different 
diffusion coefficients D1 and D2.

Two obvious observations can be made:
, As the only driving force of electromigration, the 

current density determines the level of concentration 
at steady-state: the higher the current density, the 
greater the change in atomic concentration (Fig. 1). 
For the current density J1 = Je = 1e10 A/m2, the 
normalized concentration varied from 0.3 to 2.3 
between the blocking boundaries separated by L =
50 μm.

, The diffusivity coefficient controls the time to reach 
the steady-state: the greater the diffusivity 
coefficient, the faster the steady-state is reached 
(Fig. 2). For the atomic diffusivity D1 = Da = 3e-16
m2/s, the time to reach a steady-state concentration 
takes days. For the vacancy diffusivity coefficient Dv
= 107Da used in [3], the steady-state can be achieved 
in seconds.

In the next set of numerical tests, displacement DOFs ux
and uy were activated for the PLANE223 model to include 
the effect of hydrostatic stress gradient on electromigration.

The mechanical deformation u and the total strain ε are
zero in a confined metal line. Assuming a uniaxial stress 
state σx, it follows from (13) that the hydrostatic stress can 
be written as:

� � CBCExH ������� ��

 *

3
1

3
1 , (28)

where E* = 3B is the Young’s modulus. Substituting this 
expression in (2) and ignoring the thermomigration term, we 
obtain for the atomic flux in a metal line:

,1
*

*

��

��

����
�
�

�
�
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	��

���
�

����

kT
eDCZC

kT
BDCD

kT
eDCZC

kT
BDCCDJ a

(29)

or

������
kT

eCZD
CDJ effeff

effa

*

(30)

where:

�
�

kT
BC

eZZ
kT

BCDD effeff �
	

��
�
�

�
�
� �

	�
1

   and   1
*

* (31)

are concentration-dependent effective diffusivity coefficient 
and charge number. Therefore, electromigration in a 1-D
metal line with back stress (28) can be viewed as a mass 
transport driven by electric field alone (30) and governed by
varying diffusivity coefficient Deff and charge number Z*

eff
given in (31).

Fig. 3 shows that an electromigration analysis with only 
diffusion and electric DOFs produces the same 
concentration buildup as the electromigration analysis with 
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stress migration if the diffusivity coefficient D and the 
charge number Z* are made depended on concentration as in 
(31).

Figure 3. Atomic concentration buildup at x = L driven by (1) the electric 
force alone with effective diffusivity Deff and effective charge number Z*

eff
and by (2) the electric force together with the gradient of hydrostatic stress.

According to (31), including the back stress effect in the 
model increases the effective diffusivity by the factor of (1 
+ CΩB�/kT) and decreases the strength of the electric 
driving force by the same factor. It was observed earlier that 
the increase in the effective diffusivity shorten the time to 
reach the steady-state, while the decrease in the electric 
driving force diminishes the change in concentration. 

This is illustrated in Fig. 4 that compares the buildup of 
atomic concentration for different � coefficients. For the 
expansion coefficient � = 5e-2, the steady-state is reached 
ten times faster than for the model without the back stress 
effect (� = 0). The change in normalized concentration 
decreased significantly and varied from 0.86 to 1.14 
between the blocking boundaries. 

Figure 4. Atomic concentration buildup at x = L for various diffusion 
expansion coefficients β.

The corresponding hydrostatic stress buidup at x = 0 for 
� = 5e-2 is shown in Fig. 5 together with the analytical

solution proposed by Korhonen [3]. The two solutions are 
not expected to match since Korhonen’s stress-concentration 
relationship is different from (30). According to (30), the 
maximum stress at steady-state is σ = 350 MPa while 
Korhonen’s estimate that ignores the concentration gradient 
as a driving force gives σ = GL/2 = 412.5 MPa. 

Figure 5. Hydrostatic stress buildup at x = 0.

The atomic and vacancy concentration profiles along the 
length of the metal line are shown in Fig. 6 and 7 at three 
different moments in time. They show an accumulation of 
atoms on the anode side of the line and an accumulation of 
vacancies on the cathode side. The correct direction of the 
particle transport was enforced by the proper choice of the 
sign of the charge number Z* – negative for the atoms and 
positive for the vacancies.

Figure 6. Atomic concentration buidup along the length of the line.
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Figure 7. Vacancy concentration buildup along the line.

Both the atomic and vacancy migration models produced 
the stress profile depicted in Fig. 8. It shows a tensile 
(positive) stress on the cathode side due to the depletion of 
atoms and the accumulation of vacancies, and a compressive 
(negative) stress on the anode side. To ensure the correct 
sign of the back stress in the simulation, a positive 
expansion coefficient � was used with the atomic flux 
model (Table II) and a negative one with the vacancy model
(Table III).

Figure 8. Hydrostatic stress buildup along the length of the line.

VI. TRANSIENT ANALYSIS OF A SOLDER JOINT

A transient electromigration analysis of a solder joint
under a high electric current load is performed to illustrate
the combined effect of diffusion, electromigration, stress
migration, and thermomigration on the atomic concentration
in the solder.

A half symmetry model of a SnAgCu (SAC) solder joint
sandwiched between two copper (Cu) conductors is shown in 
Fig. 9. The diameter of the joint is 760 μm and the standoff 
height is 450 μm. The width where the solder meets the 
conductors is 612 μm. These dimensions approximately 
correspond to the ball grid array (BGA) structure considered 

in [12]. The conductors are 40 μm thick, 800 μm wide (400 
μm in the half symmetry model), and 1000 μm long.

Figure 9. Solder ball model.

The model is meshed with the SOLID226 coupled-field 
elements. CONTA174 contact elements are defined between 
the solder joint and the copper conductors. Both SOLID226 
and CONTA174 elements have the following DOFs active: 
concentration (C), electric potential (φ), displacements (ux,
uy, uz), and temperature (T). The concentration DOF 
represents the normalized atomic concentration.

Most of the material parameters for copper and SAC
were borrowed from [13] and are listed in Table IV. The 
pre-exponential diffusivity coeffiecient D0, activation 
energy of diffusion  Ea and the effective charge number Z*

were selected from [14]. The diffusion expansion 
coefficients β for diffusion strain calculation were set to 1.e-
2 for both materials. The electrical resistivity for copper and 
SAC was set up to linearly depend on the absolute change in 
the local normalized concentration C with respect to the 
eqilibrium concentration Ce: � �eC CC �	� ��� 10 , where
the dependency and the parameter ρC = 2 were arbitrarily
chosen.

TABLE IV. MATERIAL PROPERTIES

Material Property Cu SnAgCu
Diffusion

Diffusivity (pre-exponent) D0, m2/s 7.8e-5 4.1e-5
Activation energy Ea, J/mol 210 -
Activation energy Ea, eV - 0.8

Electric
Electrical resistivity � @135.C, Ohm�m 2.33e-8 17.4e-8
Effective charge number Z* -4 -23

Structural
Young’s modulus E, Pa 127.7e9 26.2e9
Poisson’s ratio / 0.31 0.35
Thermal expansion �, 1/K 17.1e-6 23e-6
Diffusion expansion � 1e-2 1e-2
Atomic volume Ω, m3 1.182e-29 2.71e-29

Thermal
Thermal conductivity k, W/(m�K) 393 57
Specific heat, J/(kg�K) 385.2 219
Density, kg/m3 8900 7390
Heat of transport Q, eV - 0.0094

The electric current of I = 2.85 A (1.425 A for the half 
symmetry model) is step-applied to the end of one copper 
lead while the end of the other lead is grounded. This 
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produces an average current density of 8.9e7 A/m2 shown in 
Fig. 10.

Figure 10. Electric current density (A/m2).

The structural displacements uz are constrained on the 
symmetry surface while the uy displacements are 
constrained at the top and bottom surfaces of the model to 
prevent the structure expansion in the vertical direction.

A convection boundary condition with a film coefficient 
of 20 W/(m2 .C) to a bulk temperature of 50.C is specified 
for all surfaces except the symmetry plane. The temperature 
offset from absolute zero to zero is set to 273 degrees to 
evaluate the absolute temperature used in the calculation of 
the driving forces of electromigration.

A transient analysis with an initial normalized 
concentration of 1.0 and an initial temperature of 50.C is 
performed for 60e6 seconds (or approximately 2 years). 
Diffusion through the copper is very low and 
electromigration essentially occurs at the interface between 
the solder and the copper plates. The distribution of the 
normalized concentration at the end of the simulation (Fig. 
11) shows that indeed the atom depletion regions are located
at the material interface.

Figure 11. Normalized atomic concentration in the solder.

The analysis shows that a steady-state concentration is 
reached around 3 months (Fig. 12). A steady-state 

temperature of 135.C is reached within seconds of the 
simulation. Because the model is very small and the 
materials have high thermal conductivities, the temperature 
is uniform and the temperature gradients do not contribute 
to atomic diffusion.

Figure 12. Minimum normalized concentration.

However, the uniform temperature increase does affect 
atomic migration by contributing to the stress gradients 
(Fig. 13) due to the displacement constraints on the top and 
bottom surface of the model and thermal strain 
incompatibility between the solder and the copper plates.

Figure 13. Hydrostatic stress (MPa) in the solder.

The increase in the total electrical resistance R over time is 
shown in Fig. 14. The increase is due to the dependency of 
the local resistivity � on concentration C specified earlier.
The resistivity increase with concentration also affects the 
atomic transport. Indeed, for a given current density J, higher
resistivity results in a higher electric field density E = �J,
thus reinforcing the process of electromigration. This 
dependency �(C), along with the dependency on the 
hydrostatic stress �(σH), can be used to control the simulation 
once R reaches a critical level. In other words, these 
dependencies can serve as electrical failure criteria to 
determine the TTF of the interconnect.
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Figure 14. Electrical resistance (Ohm).

CONCLUSIONS

The ANSYS finite element program can now be used to 
simulate the process of electromigration in metal 
interconnects. 2-D and 3-D coupled-field elements have been 
enhanced to support a mass transport of one species – either 
atoms or vacancies – driven by the electric field and by the 
gradients of concentration, hydrostatic stress, and 
temperature. In the developed finite element formulation, 
concentration is fully (matrix) coupled with the electric 
potential, mechanical displacements, and temperature by the 
driving forces of electromigration. Concentration is also fully 
coupled with the displacements by the diffusion expansion 
introduced by analogy with thermal expansion to address the 
deformation produced by the change in concentration.

The electromigration analysis has been extensively tested 
using 1-D models of metal interconnect lines. Important 
aspects of the model were discussed using simple 1-D
numerical examples previously reported in the literature. A
3-D model of a solder joint is used to demonstrate the
electromigration analysis capabilities of predicting the 
evolution and distribution of concentration, stress, electric 
current, and temperature.

The ability to make material properties and loads 
dependent on concentration, hydrostatic stress, temperature,
as well as other variables considerably expands the analysis 
possibilities.
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