

ANSYS Mechanical Connections Tips and Tricks Webinar

Brice Segaud Gabriel Messager

Overview

This presentation will help you to make the best choice to connect your assembly.

Program

- Tools within Mechanical to connect bodies together
 - Share Topology
 - Contacts (Linear, Non Linear, MPC)
 - Remote Points
 - Beams and Springs
 - Joints
 - Mesh connection / Node merge
- Best connections for each situation
- Model assembly
- Conclusion

Tools within SpaceClaim/DesignModeler to connect bodies together

- Share Topology
- First tool to use before going in Mechanical
- Allow to control mesh connection between bodies
- Can be setup globally, by component, and modified manually
- View Assembly Structure help you understand how the assembly will appear when transferred downstream to ANSYS Workbench

• Contact

Surface contact elements can be visualized as a "skin" covering the surfaces of the parts in an assembly.

It is these elements that define the behavior when parts are in contact (e.g. friction, bonding, heat transfer, etc.).

• Contact

Five contact behaviors are available:

Contact Type	Iterations	Normal Behavior (Separation)	Tangential Behavior (Sliding)
Bonded	1	No Gaps	No Sliding
No Separation	1	No Gaps	Sliding Allowed
Frictionless	Multiple	Gaps Allowed	Sliding Allowed
Rough	Multiple	Gaps Allowed	No Sliding
Frictional	Multiple	Gaps Allowed	Sliding Allowed

- Bonded and No Separation contact are linear and require only 1 iteration.
- *Frictionless, Rough and Frictional* contact are **nonlinear** and require multiple iterations.

- Contact
- Automatic detection is available after geometry transfer
- Can be used in most of the cases
- Don't connect nodes them self but use internal formulation
- Behavior and pinball can affect the connection stiffness

Interested in learning more about **nonlinear contacts**? See the following webinar: https://support.ansys.com/AnsysCustomerPortal/en_us/Knowledge+Resources/Solutions/Mechanical/2058242

• Remote Point

A remote point is defined where the specified "condition" is to be located. These remote points are what are scoped to the geometry via constraint equations.

Remote Force Example

• Remote Point

Remote points occur automatically when a remote BC is defined (Point mass, joint, beam connector, spring, remote force/displacement, moment)

- A point associated with a remote boundary condition can be "promoted" to an independent remote point via RMB.

Additional Controls:

- Remote boundary conditions contain a "behavior" control that allow either rigid, deformable or coupled settings.
- An additional advanced setting allows control over the Pinball Region.
- User can Active or Inactive the DOFs

etails of Remote Point				
Scope				
34				
No				
Deformable				
All				
Program Controlled				

• Remote Point

Example of a remote force scoped to the face shown in red:

Behavior	Rigid
Pinball Region	Rigid
DOF Selection	Coupled
Pilot Node APDL Name	Beam

• Remote Point

Large numbers of constraint equations can <u>slow down compute times</u> or <u>cause over-</u> <u>constraint</u>. The "Pinball Region" settings allows the number of constraint equations:

Definition			
ID (Beta)	34		
Suppressed	No		
Behavior	Deformable		
Pinball Region	21. mm		
	-		

• Remote Point

Remote Point attached to other Remote Points

Scope		
Scoping Method	Geometry Selection	
Geometry	Geometry Selection Named Selection	
Coordinate System		
X Coordinate	Remote Points And Nodes	
Y Coordinate	Free Standing	

Free standing Remote Point

• Beams and Springs

A longitudinal or torsional spring can be defined as any another form of connection.

- Body to Body or Body to Ground
- Direct or Remote attachment (same Remote Point can be used for several springs)
- Preload may be added using either a free length or load value.
- Damping may be added to the spring's definition.

ŝ.

Spring

• Beams and Springs

The Beam feature is often useful in simulating various fasteners (e.g. bolts).

Beams are defined in terms of reference and mobile sides.

- Body to Body or Body to Ground
- The behavior can be rigid or deformable.
- Direct or Remote attachment
- Beam Probe is available for Axial and Shear Force, Torque and Moment
- <u>Pretension Load can be defined</u>

• Joint

Joints give a description of relative motion between two bodies

Revolute

Cylindrical

Spherical

Planar

Translational

© 2019 ANSYS, Inc.

Slot

• Joint

Setup of a kinematic joint:

- Creation of two pilot nodes
- Constraint equation between pilot node and Interfaces
- Creation of element MPC 184

Definition of a joint in Mechanical

What the solver sees

🌀 Joint

• Joint Stops and Locks

For the Revolute and Cylindrical joint types a torsional stiffness and/or damping can be defined in the joint's details.

Most joints can also employ stops and/or locks to limit the range of joint motion

Joint Type		Stop/Lock			
Revolute	Yes	Yes			
Cylindrical	Yes	Yes			
Translational	Yes	Details of "Translational - Ground To Soli		round To Solid"	
Slot	Translational	Œ	Definition		
Universal	Yes	+	Reference Machine		
Spherical	No				
Planar	Yes		X Min Type	Stop	
General	Translational		🗌 X Min	10. mm	
			X Max Type	Lock	
			🔜 X Max	50. mm	

• General / Bushing Joint

Has six degrees of freedom, three translations and three rotations

Inputs:

- Stiffness Coefficients (can be non linear)
- Dampening Coefficients

Equivalent to having 6 independent springs for six DOF

Details of "Bushing - No Selection To No Selection"			џ
Ξ	- Definition		
	Connection Type	Body-Body	
	Туре	Bushing	
	Formulation	MPC 💌	
	Suppressed	мрс	
	Element APDL Name	Bushing	
	Reference	•	

COMBIN250 (Nastran CBUSH element) available for modal and harmonic analysis from ANSYS 2019R1

=> Doesn't use Lagrangien coefficients and doesn't create constraint equations. Can be used with CMS

් Joint

• Joint

Benefits of joints:

- Easy to set up
- Large deformations are supported
- Advanced Stiffness and Damping definition
- Easy modification of bodies positions through configure tool
- Faster in most cases than penalty equivalents
- <u>Fixed joint can now be used with Iterative solver (or sparse without pivoting) by using Contact/direct solver element type option</u>
- Advanced post processing including relative motion, force and torque

Def	Details of "Fixed - Surface To Surface"				
Definition					
	Connection Type	Body-Body			
•	Туре	Fixed			
	Solver Element Type	Program Controlled 🔹			
	Suppressed	Program Controlled			
	Element APDL Name	Joint Element Contact/Direct			

Selection options Multi body view, explode view or plans

Geometry Print Preview Report Preview

- Mesh connection
 - The mesh connection is only available for shells and beams It remesh the area in order to connect the mesh:

• Node merge

The node merge moves nodes to connect meshes (same NUMMRG in APDL)

Scope Scoping Method Geometry Selection Master Geometry 1 Edge Slave Geometry 1 Edge Master Bodies Component2\Surface Slave Bodies Component2\Surface Definition Scope Mode Manual Tolerance Type Value 0.1 mm Tolerance Value Suppressed No

Overview

This presentation will help you to make the best choice to connect your assembly.

Program

- Tools within Mechanical to connect bodies together
 - Share Topology
 - Contacts (Linear, Non Linear, MPC)
 - Remote Points
 - Beams and Springs
 - Joints
 - Mesh connection / Node merge
- Best connections for each situation
- Model assembly
- Conclusion

• Solid to Solid connection

Scope		
Scoping Method	Geometry Selection	
Protected	No	
Definition		
Туре	Bonded	
Scope Mode	Automatic	
Behavior	Asymmetric	
Trim Contact	Program Controlled	
Trim Tolerance	76.629 mm	
Suppressed	No	
Advanced		
Formulation	MPC	
Detection Method	Program Controlled	
Constraint Type	Program Controlled	
Pinball Region	Radius	
Pinball Radius	20. mm	
Geometric Modification		
Contact Geometry Correction	None	
Target Geometry Correction	None	

Example of settings

• Solid to Solid connection

Share Topology in Spaceclaim

Mesh merged at the interface

• Solid to Solid connection

	Solid to Solid
Contact	+++
Joint	++
Share Topology	+++*
Mesh connection	X

Solid ↔ Solid Shell ↔ Shell ↔ Beam ↔ Beam

*can add difficulty for the mesh due to the imprints

© 2019 ANSYS, Inc.

Best connections for each situation

• Shell to Shell connection

Contact

Scope			
Scoping Method	Geometry Selection		
Contact	1 Face		
Target	1 Face		
Contact Bodies	Shells\Pied - Liaison ext arriere dte		
Target Bodies	Shells\Pied - rondelle ext arriere dte		
Contact Shell Face	Тор		
Target Shell Face	Bottom		
Shell Thickness Effect	Yes		
Protected	No		
Definition			
Туре	Bonded		
Scope Mode	Automatic		
Behavior	Asymmetric		
Trim Contact	Program Controlled		
Trim Tolerance	76.629 mm		
Suppressed	No		
Advanced			

ANSYS Confidential **ANSYS**

Best connections for each situation

• Shell to Shell connection

Solid ↔ Solid

Share Topology or Mesh Connection

• Shell to Shell connection

	Solid to Solid	Shell to Shell
Contact	+++	++
Joint	++	-
Share Topology	+++	+++
Mesh connection	X	+++

• Beam to Beam connection

-

-

Scope

End Release

For line body models, the End Release feature enables you to free the degrees of freedom (translation and rotation) at a vertex that is shared by two or more edges.

You can free the constraint of multiple edges at the vertex's location, however, you must always keep at least one edge from being released.

• Beam to Beam connection

	Solid to Solid	Shell to Shell	Beam to Beam
Contact	+++	++	_*
Joint	++	-	+
Share Topology	+++	+++	+++
Mesh connection	X	+++	+**

*except for this type of modelization

**Node Merge

Solid to Shell connection

Solids\Pied - Liaison sup gche (sym)111

The rotational DOF of the shell is

coupled with the displacement DOF of the neighbor nodes belong to the face of the solid body.

Contact MPC

Display Constraint Equations

• Solid to Shell connection

	Solid to Solid	Shell to Shell	Beam to Beam	Solid to Shell
Contact	+++	++	-	+++ (MPC)
Joint	++	-	+	-
Share Topology	+++	+++	+++	
Mesh connection	X	+++	+	X

• Shell to Beam connection

Share Topology

Coincident mesh

• Shell to Beam connection

Solid \leftrightarrow Solid Shell \leftrightarrow Beam \leftrightarrow Beam

	Solid to Solid	Shell to Shell	Beam to Beam	Solid to Shell	Beam to Shell
Contact	+++	++	-	+++ (MPC)	-
Joint	++	-	+	-	-
Share Topology	+++	+++	+++		+++
Mesh connection	X	+++	+	X	++

• Solid to Beam connection

• Solid to Beam connection

Solid \leftrightarrow Solid Shell \leftrightarrow Shell \leftrightarrow Beam \leftrightarrow Beam

	Solid to Solid	Shell to Shell	Beam to Beam	Solid to Shell	Shell to Beam	Solid to Beam
Contact	+++	++	-	+++ (MPC)	-	++ (MPC)
Joint	++	-	+	-	-	+++
Share Topology	+++	+++	+++		+++	
Mesh connection	X	+++	+	X	++	X

Overview

This presentation will help you to make the best choice to connect your assembly.

Program

- Tools within Mechanical to connect bodies together
 - Share Topology
 - Contacts (Linear, Non Linear, MPC)
 - Remote Points
 - Beams and Springs
 - Joints
 - Mesh connection / Node merge
- Best connections for each situation
- Model assembly
- Conclusion

Model assembly

Model assembly

Conclusion

- Many tools are available to connect bodies together. To make the best choice, consider all the following points:
 - Type of bodies
 - Behavior (linear or non linear) / Relevance to reality
 - Time preparation (CAD vs Mechanical)
 - Time computing
 - Post processing