

Transient Analysis Time Setting Tips and Tricks

Significance of time step settings in dynamic analyses

- Transient analysis is a technique used to determine the response of a structure under timedependent loads.
- Time step settings influence simulation accuracy and solution time.
- Solution time for a transient dynamics simulation is not only a function of the model size, but also the time step size. It requires more computer resources due to the time integration.

Topics

- Concept of time step
- Time step settings for a preloaded transient analysis
- Time step size of the implicit solvers
- Time step size of the explicit solvers
- Time step size of thermal analyses and the undershot problem

Formulation: implicit solver vs. explicit solver

uation of motion
$$M^{t}U + C^{t}U + K^{t}U = {}^{t}R$$
 (1)

Implicit Eq. 1 is solved at time $t+\Delta t$ to get $U(t+\Delta t)$

Explicit Eq. 1 is solved at time t to get U(t+
$$\Delta$$
t)

$$\left(\frac{2M+C\cdot\Delta t}{2\Delta t^{2}}\right)U^{t+\Delta t} = {}^{t}R - \left(\frac{K\Delta t^{2}-2\cdot M}{\Delta t^{2}}\right)U^{t} - \left(\frac{2M-C\cdot\Delta t}{\Delta t^{2}}\right)U^{t-\Delta t} \quad (2)$$

ANS

Leapfrog method

Eq

Load Step & Substep

•A load step is a configuration of load sets to differentiate changes in general loading.

•Substeps are time increments between successive time points within a load step, mainly for accuracy and convergence purposes in transient and nonlinear analyses.

ANSYS Confidential

Preloaded Transient Analysis

•Step 1: Time Integration OFF, static analysis

•Step 2: Time Integration ON, transient analysis

•Results of Step 1 are carried into Step 2.

🖻 B : Transient Struc	tural - Mechanical [A <mark>NS</mark>]		nanical Enterprise]			
File Edit View Units	Tools Help 🛛 🖂 🍛 🔸	🤣 Se	olve 🔻 🔤 New Analysis 👻 ?/ Sl	how Errors 🟥 👪	🖄 🖪 🧭 🗕 🗊 Wo	rkshee
E Show Vertices	lose Vertices 8 3e-002 (A	uto Scal	Vireframe	esh 🙏 🛃 Random	Preferences 1	. Î.
≥t ∩_ Beset Evolode				Coloring x 4x 4x		
		ASS	Sembly Center		12 13 1X 1	~ ""
JEnvironment 🗣 Inertial	✓ Support	ts 🕶 🕰	Conditions 🔻 🧠 Direct FE 💌			
Outline		<u> </u>	Worksheet			
Filter: Name 🗸			Analysis Sottings			
Analysis Settings						
Project			Properties	Step 1	Step 2	
📥 🗟 Model (B4)			Step Controls			1
i Geometry			Step End Time	1.e-005	0.1	
🗄 🏒 🙏 Coordinate	Systems		Auto Time Stepping	On	On	
Mesh			Define By	Time	Time	
📄 🎝 🗋 📩 📩	(B5)		📔 Carry Over Time Step 🔪	N/A	Off /	
🗄 🚽 💼 Initial C	onditions		Initial Time Step	1.e-007	1.e-003	
	s Settings		Minimum Time Step	1.e-007	1.e-005	
, Fixed S	Support		Maximum Time Step	1.e-007	1.e-003	
, Displace	ement		Time Integration	Off	On 🗖	
🔍 🔍 Pressur	e		Nonlinear Controls	Duran Durah II. I		
📄 🏑 🎰 Solutio	on (B6)		Force Convergence	Program Controlled	Program Controlled	
So 📃 🗌 So	lution Information		Moment Convergence	Program Controlled	Program Controlled	
📃 👘 То	tal Deformation		Displacement Convergence	Program Controlled	Program Controlled	
			Lipe Search	Program Controlled	Program Controlled	
			Stabilization	Program Conditioned		
			Stress	Yes	Yes	
			Strain	Yes	Yes	
			Nodal Forces	No	No	
			Contact Miscellaneous	No	No	
			General Miscellaneous	Yes	Yes	
l			Store Results At	All Time Points	All Time Points	
Details of "Analysis Settin	gs"	д				
Step Controls						
Number Of Steps	2.]	Graphics Worksheet			
Current Step Number	2.	i	Graph			
	0.15					
Define By	Time					
Carry Over Time Step	Off					
Initial Time Step	1.e-003 s					
Minimum Time Step	1.e-005 s					_
Maximum Time Step	1.e-003 s				/	
Time Integration	On					
Solver Controls						
Solver Type	Program Controlled					
VVeak Springs	Off					
	lou					
Nonlinear Controls						
INORITINEAL CONTROLS Output Controls						
Damping Controls						
Analysis Data Management						
B Visibility						
-						

Choosing time step size Δt

• Do an auxiliary Modal Analysis to determine the significant mode frequency f1 (Tmin=1/f1)

$$\Delta t \le \frac{T_{\min}}{20}$$

- Correctly describe the time-varying loads
- Smaller Δt if acceleration results are needed.
- For an impact problem, stress waves must propagate through the model.
- Do not assume that ANSYS will make a good choice.

Time step size criterion in a transient structural analysis

• The midstep residual norm provides a measure of the accuracy of the equilibrium for each time step. To activate the criterion, use command MIDTOL.

🕅 B : Transient Structural - Mechanical [ANSYS Mechanical Enterprise]	M B : Transient Structural - Mechanical [ANSYS Mechanical Enterprise]
File Edit View Units Tools Help Image: Solve vertices Image:	File Edit View Units Tools Help □ ② Image: Solve I
Filter Name Project Model (B4) <tr< td=""><td>Image: Second second systems EQUIL ITER I COMPLETED. New TRIANG MATRIX. MAX DOF INC= 0.7310 Image: Second systems Force CONVERGENCE VALUE = 5573. CRITERION= 318.2 Image: Second systems DISP CONVERGENCE VALUE = 0.1822E-01 CRITERION= 0.2214 <<< CONVERGED</td> Image: Systems Second systems Image: Systems Secon</tr<>	Image: Second second systems EQUIL ITER I COMPLETED. New TRIANG MATRIX. MAX DOF INC= 0.7310 Image: Second systems Force CONVERGENCE VALUE = 5573. CRITERION= 318.2 Image: Second systems DISP CONVERGENCE VALUE = 0.1822E-01 CRITERION= 0.2214 <<< CONVERGED
 Initial Conditions Analysis Settings Fixed Support Displacement Pressure Commands (APDL) Solution (B6) Solution Information Total Deformation 	Commands (APDL) Solution (B6) Solution Information Total Deformation Total Deformation Solution Information Solution Solver Output Newton-Raphson Residuals O

MSUP Transient Analysis Δt

 In Modal Super Position Transient analysis time step size has to be constant through out the analysis, it can't change in between like in FULL transient analysis. That is why auto time stepping is not activated when the transient analysis system is linked with modal analysis system for Modal Super Position Transient analysis. Δt is calculated by ANSYS based on material properties and element sizes in the model.

Search Keywords: Auto time stepping

Customer Portal KM ID: 2042588

Reduced Transient Dynamic Analysis Δt

- The only valid general option is Integration Time Step (<u>DELTIM</u>). The integration time step is assumed to be constant throughout the transient.
- NSUBST command cannot be used.

Search Keywords: reduced transient

Customer Portal KM ID: 251105

For the explicit methods, Δt

- They are conditionally stable, which means that Δt is limited to a maximum value.
- Δt is calculated by ANSYS based on material properties and element sizes in the model.
- Users can leave time settings to the program for most applications.

Step Controls		
Resume From Cycle	0	
Maximum Number of Cycles	1e+07	
End Time		
Maximum Energy Error	0.1	
Reference Energy Cycle	0	
Initial Time Step	Program Controlled	
Minimum Time Step	Program Controlled	
Maximum Time Step	Program Controlled	
Time Step Safety Factor	0.9	
Automatic Mass Scaling	No	

Mass Scalling for an explicit analysis

- The idea is to manipulate the material density to increase Δt but still satisfy the stability condition.
- A larger Δt can reduce the solution time dramatically.
- A trade-off is that artificially increasing density can also adversely affect accuracy.
- This technique is appropriate for low acceleration scenarios because of the inertia effects.
- Addition of mass to just a few small elements in a noncritical region is a good strategy.

Automatic Mass Scaling in explicit analysis

- Masses in smaller elements are scaled up to increase the time step size
- Input required for this option
 - Maximum Element Scaling.
 - Limits the ratio of scaled mass / physical mass that can be applied to each element in the model.
 - Maximum Part Scaling
 - Limits the ratio of scaled mass / physical mass that can be applied to an individual body.

- Update Frequency

- The frequency (in cycles) that mass scaling is performed.
 - A value of zero means mass scaling is only done once, at the start of the simulation

Step Controls			
Resume From Cycle	0		
Maximum Number of Cycles	1e+07		
End Time			
Maximum Energy Error	0.1		
Reference Energy Cycle	0		
Initial Time Step	Program Controlled		
Minimum Time Step	Program Controlled		
Maximum Time Step	Program Controlled		
Time Step Safety Factor	0.9		
Automatic Mass Scaling	Yes 💌		
Minimum CFL Time Step	1.e-020 s		
Maximum Element Scaling	100.		
Maximum Part Scaling	5.e-002		
Update Frequency	0		

Mass Scaling example

Standard Timestep 2.0e-5

Mass scale timestep 1.0e-4

5x Increase in DT 0.02% Increase in mass

MASS SCAL	ING SUMMAR	Y BY PART		
PART	MASS	ADDED MAS	S TOTAL MASS	%ADDED
1-VOLUME 2-VOLUME	2.307E+0 2.035E+0	4 4.945E+0 5 0.000E+0	0 2.307E+04 2 0 2.035E+05	2.144E-02 0.000E+00

MASS_SCALE under Solution for a contour plot of the mass scaling

Mass scaling summary is in the Print file

(.prt)

- If ∆t is too small, solution oscillations may occur which could result in temperatures which are not physically meaningful (e.g. thermal undershoot).
- If Δt is too large, temperature gradients will not be adequately captured.

- Approximating a reasonable Δt use the Biot and Fourier numbers.
- The <u>Biot Number</u> is the dimensionless *ratio* of convective and conductive thermal resistances, where Δx is the mean element width, h is the average film coefficient, and K is an averaged conductivity.

$$Bi = \frac{h\Delta x}{K}$$

• The <u>Fourier Number</u> is a dimensionless time ($\Delta t/t$) which quantifies the relative rates of heat conduction vs. heat storage for an element of width Δx : Where ρ and c are averaged density and specific heat, respectively. $E \rho = \frac{4K \Delta t}{E}$

$$Fo = \frac{4K\,\Delta t}{\rho C (\Delta x)^2}$$

If $B_i < 1$, then we use the F_0 to calculate Δt . Otherwise, we use $B_i F_0$ to calculate Δt .

 When Δt is 100 times the ITS suggestion based on the Fourier Modulus, ANSYS issues a warning.

******* Initial Time Increment Check And Fourier Modulus ********
Specified Initial Time Increment: 20
Estimated Increment Needed, le*le/alpha, Body 1: 0.0140781

***************** SOLVE FOR LS 1 ************

June 12, 2018

The Response Eigenvalue represents the dominant system eigenvalue for the most recent time step solution (reported in Solution information). It can be viewed as a Fourier Number for the discretized system.

The Oscillation Limit is a dimensionless quantity that is simply the product of the Response Eigenvalue and the current time step size (reported in Solution information).

$$f = \Delta t_n \lambda_r \qquad \lambda_r = \frac{\{\Delta T\}^T [K] \{\Delta T\}}{\{\Delta T\}^T [C] \{\Delta T\}}$$

It is typically desirable to maintain the oscillation limit below 0.5 to ensure that the transient response of the system is being adequately characterized.

Thermal Undershoot

- Smaller Δt may generate bad results in a transient thermal analysis.
- When $\Delta t < \frac{L^2}{4\alpha}$, unwanted oscillations may occur for the elements with midsize nodes so that temperatures could be outside of the physical ranges. *L* is element length and $\alpha = \frac{k}{\rho c}$ is the thermal diffusivity.
- Reducing mesh size will lead to smaller Minimum recommended time step.
- Therefore, users should consider rate of convergence, minimum time step as well as the oscillation limit output.

Thermal Undershoot

ANSYS Confidential

ANSYS Knowledge Database

Highlights Created, reviewed & maintained by ANSYS experts.

Over 500 video demos showcasing pre- and post-processing.

Used by over 40,000 people from around the world every month.

