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Hyperelasticity Chapter Overview

This appendix is an optional supplement to Lecture 
4, offering a more rigorous explanation of each 
particular form of the strain energy density function 
(W) and the differences between them.

Some guidelines will also be presented to aid the 
user in the selection the best strain energy density 
function.

Prerequisite is Chapter 4
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... Particular Forms of W

The strain energy potential (W ), introduced in Chapter 4, will require certain 

types of parameters input as material constants.

• The number of material constants will differ, depending on the strain energy function 

W chosen.

• The choice of W will depend on the type of elastomer analyzed, the loading 

conditions, and the amount of data available.

• Some very general guidelines will be presented to aid the user in the selection of W.  

Keep in mind that, because of the above-mentioned factors, no guidelines can cover 

100% of situations. 

• From the selection of W and material constants which are input, stress and strain 

behavior are calculated by the solver.

• The next slides discuss the different forms of strain energy potential W available in 

ANSYS with some comments on the selection and of their use.
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The polynomial form is based on the first and second strain invariants.  It is a 
phenomenological model of the form

where the initial bulk modulus and initial shear modulus are
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... Polynomial Form Guidelines

Comments on the General Polynomial Form (PF):

• As noted in the figure below, more terms will be required to capture any inflection 

points in the engineering stress-strain curve.  The user must ensure that enough data 

is supplied with inclusion of higher-order terms. Polynomial form with N=2 or N=3 

may be used up to 100-300% strains (general guideline). Usually, values of N greater 

than 3 are rarely used.

• PF is a very general form, so it can produce very good curve fits.  As with all models, 

data of expected modes of deformation is required when curve-fitting.  If limited (e.g., 

uniaxial) test data exists, consider use of Yeoh model (see Yeoh section later).

PF with N=1              PF with N=2            PF with N=3



© 2015 ANSYS, Inc. March 9, 20176

... Mooney-Rivlin Model

There are two-, three-, five-, and nine-term Mooney-Rivlin models available in 

ANSYS.  These can also be thought of as particular cases of the polynomial 

form.

• The Mooney-Rivlin model is commonly considered with N=1 (two-term M-R),

although ANSYS allows for any value of N.

• The two-term Mooney-Rivlin model is equivalent to the polynomial form when N=1:

• The three-term Mooney-Rivlin model is similar to the polynomial form when N=2 and 

c20=c02=0:
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... Mooney-Rivlin Model

The five-term Mooney-Rivlin model is equivalent to the polynomial form when 
N=2:

The nine-term Mooney-Rivlin model can also be thought of as the polynomial 
form when N=3:
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... Mooney-Rivlin Model

For all of the preceding Mooney-Rivlin forms, the initial shear and initial bulk 
moduli are defined as:
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... Mooney-Rivlin Guidelines

Comments on the Mooney-Rivlin (M-R) model:

• Because of its equivalence to polynomial forms (N=1, 2, 3), as discussed earlier, the 

same PF guidelines apply to M-R models.

• The 2-term Mooney-Rivlin model is most commonly used.  Some very broad rules-

of-thumb are presented below.

– The 2-term M-R may be valid up to 90-100% tensile strains, although it will not 

account for stiffening effects of the material, usually present at larger strains.

– Pure shear behavior may be characterized up to 70-90%.  This is because the 2-

term M-R model exhibits a constant shear modulus.

– Although moderate compression behavior can be characterized well (up to 30%), 

significant compression response may not be captured with only 2-term MR.
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... Yeoh Model

The Yeoh model (a.k.a. reduced polynomial form) is similar to the polynomial 
form but is based on first strain invariant only.

The Yeoh model is commonly considered with N=3 (a.k.a. “cubic” form), 
although solver allows for any value of N.

The initial shear and bulk moduli are defined
similar to other invariant-based models:
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... Yeoh Model Guidelines
One may note from the previous slides that the Yeoh model is dependent on the first 
invariant I1 only.*

• Yeoh proposed omitting the second invariant term.  The justification of this comes 
from the observation that changes in the strain energy potential is less sensitive to 
changes in the second invariant than the first (i.e., W/I1 >> W/I2).  This is 
especially true for larger strains.

• Also, if only limited test data is available (e.g., uniaxial test), it has been shown that 
ignoring the second invariant leads to better prediction of general deformation 
states.

• As strain increases, the shear modulus (slope) decreases slightly then increases.  To 
reflect this, use a cubic form (N=3):

– c10 is positive, equal to half of initial shear modulus value

– c20 is negative (softening at small strains), ~ 0.1 to 0.01 * c10

– c30 is positive (stiffening at larger strains), ~ 1e-2 to 1e-4 * c10

* For a detailed discussion on this topic, please refer to the papers by O.H. Yeoh, “Characterization 

of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates,” Rubber Chem. Tech. 63, 1990 

and “Some Forms of the Strain Energy Function for Rubber,” Rubber Chem. Tech. 66, 1993
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... Neo-Hookean Form

The neo-Hookean form can be thought of as a subset of the polynomial form for 
N=1, c01=0, and c10=/2:

where the initial bulk modulus is defined as
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... Neo-Hookean Guidelines

The neo-Hookean model is the simplest hyperelastic model, and it may be a 
good way to start.

• Although it will probably not predict moderate/large strains well, for small strain 
applications, it may be suitable.

Similar considerations apply to the neo-Hookean model as to the 2-term 
Mooney-Rivlin model (discussed earlier):

• The neo-Hookean form may be valid up to 30-40% tensile strains, and it will not 
account for stiffening effects of the material, usually present at larger strains.

• Pure shear behavior may be characterized up to 70-90%.  This is because the neo-
Hookean model exhibits a constant shear modulus.

• Although moderate compression behavior can be characterized well (up to 30%), 
significant compression response may not be captured with neo-Hookean.
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... Arruda-Boyce Model

The Arruda-Boyce form (a.k.a. eight-chain model) is a statistical mechanics-
based model.  This means that the form was developed as a statistical 
treatment of non-Gaussian chains emanating from the center of the element 
to its corners (eight-chain network).

• where the constants Ci are defined as
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... Arruda-Boyce Model

• The initial shear modulus is .

– In the Arruda-Boyce paper,* the rubbery modulus (shear modulus) is defined as nkQ, 

which is a function of chain density (n), Boltzmann’s constant (k), and temperature (Q).  

In ANSYS,   nkQ.

• The limiting network stretch L is the chain stretch at which stress starts to increase 

without limit.

– Note that as L becomes infinite, the Arruda-Boyce form becomes the Neo-Hookean 

form.

– Also in the paper,* the equation references the locking stretch (limiting network 

stretch) as N.  In ANSYS, L  N.

• The initial bulk modulus  is defined as usual by 2/d.

* For a detailed discussion on this topic, please refer to the paper by M.C. Boyce and E.M. 

Arruda, “A Three-Dimensional Constitutive Model for the Large Stretch Behavior of 

Rubber Elastic Materials,” J. Mech. Phys. Solids, Vol 41 No 2, 1993.
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... Arruda-Boyce Guidelines
A few comments on the Arruda-Boyce (A-B) model:

• It is apparent that the A-B model has some similarities to the Yeoh model, although the 

coefficients are fixed, predefined functions of the limiting network stretch L.

– This means that discussion of the Yeoh model and consideration of I1-dependency are 

applicable here as well.

– From a physical standpoint, the use of I1 only means that the eight chains are equally 

stretched under any deformation state, i.e., I1= 1
2+ 2

2+ 3
2 represents this chain 

elongation.

– Additional usefulness of the Arruda-Boyce model stem from the fact that the material 

behavior can be characterized well even with limited test data (uniaxial test), and fewer 

material parameters are required.  However, this is a fixed formulation, which may 

limit its applicability for any material.

– Generally speaking, suited for large strain ranges.

– No stress softening but only stress stiffening with increasing strain.
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... Arruda-Boyce Guidelines

More comments on the Arruda-Boyce (A-B) model:

• The A-B equation used here is actually the first five terms of the strain energy 

function.  The original equation is a stress relationship which contains an inverse 

Langevin function.  This equation needs to be converted to a series expansion and 

numerically integrated to get W (i.e., integration is not exact). 

– Because only the first five terms of W are commonly used, this may cause the 

limiting network stretch to be slightly less pronounced.

– This does not invalidate the model but is simply mentioned in case one does an 

academic exercise to stretch a model near the limiting stretch value.  The stress 

will rise dramatically but will not experience any ‘limiting’ stretch value.

– It is important to note that, in this discussion, one is referring to the chain stretch, 

which is defined as:
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... Gent Model
The Gent model is a micromechanical model, similar to Arruda-Boyce, which also 
utilizes the concept of limiting network stretch:

where the constants , Jm, and d are input.   is the initial shear modulus.  Jm is the limiting 
value of (I1-3), analogous to L for Arruda-Boyce.

• The initial shear modulus is 

– In Gent’s paper,* the tensile modulus E is defined instead, with  = E/3.

• Jm is the limiting value of (I1-3) where stresses become infinitely large.

– Note that as Jm becomes infinite, the Gent model approaches the Neo-Hookean
model.

• The initial bulk modulus  is defined as usual by 2/d.
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* For a detailed discussion on the model, please refer to A. N. Gent, “A New Constitutive Relation 

for Rubber,”   Rubber Chem. Tech. 69, 1996.
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... Gent Guidelines

Some comments on the Gent model:

• If a series expansion of the natural logarithm is performed, the resulting expression 
will be similar to the Yeoh model.  The coefficients, however, are predefined functions 
of Jm.

• It is quite clear that there are many similarities between the Gent and A-B models.*

– Jm is the limiting value of (I1-3) in Gent, analogous to L being the limiting value of 
chain stretch chain for A-B.

– As stated in Gent’s paper, the value of Jm should be on the order of 100.

• Because of the fact that Gent’s strain energy function is used exactly, Jm is the limiting 
value of (I1-3) where stresses will increase without bounds.

• Like the Yeoh and Arruda-Boyce models, the Gent model is applicable for large strain 
cases.

* For a detailed discussion on the comparison of the two models, see M.C. Boyce, “Direct 

Comparison of the Gent and the Arruda-Boyce Constitutive Models of Rubber 

Elasticity,” Rubber Chem. Tech. 69, 1996
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... Ogden Model
The Ogden form, another phenomenological model, is directly based on the 
principal stretch ratios rather than the strain invariants:

where the initial bulk and shear moduli are defined as

• The model is equivalent to the (two-term) Mooney-Rivlin form if

N=2  1=2c10 a1=2  2=-2c01 a2=-2

• The model degenerates to the Neo-Hookean form when

N=1  1= a1=2
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... Ogden Guidelines
Some comments on the Ogden model:

• Since Ogden is based on principal stretch ratios directly, it may be more accurate and 
often provides better curve fitting of data.  However, it may also be a little more 
computationally expensive.

• Note that if limited test data exists and multiple modes of deformation are expected, 
curve-fitting uniaxial data only may not yield realistic behavior in other modes.

• Ogden noted that a minimum of three terms should be used.*

– The first term represents small strain values:
1.0 < a1 < 2.0 and 1 > 0

– The second term represents stiffening at larger strains:
a2 > 2.0 and 2 > 0 with 2 << 1

– The third term represents behavior in compression:
a3 < -0.5 and 3 < 0 with 3 << 1

– The product iai should always be positive (shear modulus)

* For a detailed discussion, see R.W. Ogden, “Large Deformation Isotropic Elasticity - On the Correlation of Theory and 

Experiment for Incompressible Rubberlike Solids,” Rubber Chem. and Tech. 46, 1973 and “Recent Advances in the 

Phenomenological Theory of Rubber Elasticity,” Rubber Chem. and Tech. 59, 1986
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... Ogden Guidelines

• Yeoh added some additional insights on the Ogden constants by examining the Ogden 
equation:*

– In shear, when |ai| > 2.0, material stiffens with increasing strain.  Conversely, when 
|ai| < 2.0, material softens with increasing strain.  (Shear behavior is insensitive to 
sign of ai)

– When ai is negative, it has a large contribution to compressive behavior but small 

contribution to tensile behavior.  For positive, small values of ai, the compression 

behavior is insensitive to ai and behaves like neo-Hookean material (a1=2).

– Yeoh proposed the following guideline for 2-term Ogden:
1.2 < a1 < 1.6 and 1 > 0                           (small-strain behavior)
a2 ~ 6.0 and 2 > 0 with 2 << 1 (large-strain tensile behavior)

• Generally speaking, the Ogden model can be used to characterize small or large strain 
behavior.

* For a detailed discussion, see O.H. Yeoh, “On the Ogden Strain-Energy Function,” 

Rubber Chem. and Tech. 70, 1997
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... Ogden Compressible Foam Model

The Ogden compressible foam model (a.k.a. Hyperfoam model) is similar to the 
Ogden incompressible model:

where the initial bulk and shear moduli are

However, unlike the regular Ogden model, in the Ogden compressible foam 
model, the volumetric and deviatoric terms are tightly coupled.  Hence, this 
model is meant to model highly compressible rubber behavior.
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... Ogden Foam Model Guidelines

The Ogden compressible foam model behaves in a similar fashion to the 
regular Ogden model for incompressible rubber:

• Larger negative values of ai affect behavior in compression more drastically.

• Conversely, larger positive values of ai affects tensile behavior (significant hardening)
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... Blatz-Ko Model

The Blatz-Ko model is specifically for compressible polyurethane foam rubber 
with the following form:

where  is the shear modulus.

• The bulk modulus  is defined as 5/3.

This implies n = 0.25.

• Note that I2 and I3 are regular (not deviatoric) 

second and third strain invariants.

• This model was proposed by Blatz and Ko for

a 47% volume percent polyurethane foam-type 

rubber.
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... Blatz-Ko Model

The Blatz-Ko model can be thought of as a subset of Ogden compressible foam 
model, with N=1, 1=-, a1=-2, 1=0.5.

As will be shown later, the effective Poisson’s ratio can also be determined from 
, which again leads to the assumption of n=0.25 for Blatz-Ko.
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... Incompressibility Considerations

The Ogden Compressible Foam and Blatz-Ko models are for compressible foam-
type rubbers.  The deviatoric and volumetric terms of strain energy are tightly 
coupled.

For the nearly incompressible rubber models, 
the volumetric term is often presented as one 
of three forms, as shown on the right:

• Recall that the term J is ratio of current to 

original volume.  Undeformed state is J=1.

• For cases of Wb
1, only d1 is usually considered (= Wb

2).

• The selections of Wb and the bulk modulus value (=2/d) do not tend to affect results 

much unless the model is significantly stretched (leading to finite volume change) or 

highly confined.

For the fully incompressible case with d=0, this volumetric term Wb is ignored 
(J=1, volume preserved).
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... Incompressibility Considerations

Considerations for Incompressibility:

• All rubber-like materials have some very small compressibility.  However, assuming 

full incompressibility is usually a suitable approximation.  The choice of treatment of 

material as nearly- or fully-incompressible is decided by the user and data available.

– Without any data,  is sometimes approximated anywhere from 500* (n=0.499) 

to 2000* (n=0.49975).

• For 18x lower-order elements, use B-Bar as first choice for nearly incompressible 

problems

– If shear locking exists, switch to Enhanced Strain.

– If volumetric locking occurs with very high n, use Mixed u-P.

• If the material is fully incompressible, 18x elements with Mixed u-P must be used.  

Set d=0 and KEYOPT(6) > 0 for fully incompressible problems.
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... Poisson’s Ratio

For nearly- or fully-incompressible materials, the material compressibility 
parameter d can be estimated as follows:

• The initial bulk modulus can be estimated

and written in terms of the initial shear

modulus

• The material compressibility parameter is

proportional to the inverse of the initial bulk

modulus

• The initial bulk modulus is provided in the

previous slides for each of the hyperelastic

materials

• The material compressibility parameter can

therefore be written in terms of the initial

bulk modulus as shown on the right, 

assuming nearly- or fully-incompressible

behavior.
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... Poisson’s Ratio

The material compressibility parameter d is not present in compressible 
models since the volumetric term is coupled:

• For the Blatz-Ko compressible foam model, the Poisson’s ratio is assumed to be 

n=0.25

• For the compressible Ogden model, Poisson’s ratio can be calculated as follows, 

assuming i is constant ():
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References for Material Data Input

ANSYS Online Help References:

1. ANSYS Elements Reference, Section 4.7

2. ANSYS Structural Analysis Guide, Section 8.4.1.3

3. ANSYS, Inc. Theory Reference, Section 4.6


