
© 2019 ANSYS, Inc. All rights reserved.

__

How to access solid material properties of a porous
equilibrium zone in an ANSYS Fluent User-Defined
Function (UDF)?

Description

For the thermal equilibrium porous model Fluent doesn’t create an additional zone for the porous solid.
Therefore, you cannot access material properties with the usual C_* macros. If you need access to the
material properties of the solid zone, you can access the data structure directly. It is only available for com-
piled UDFs and cannot be used when interpreting.

Important

Whenever you access the data structure, keep in mind that this can change without prior
notice. Changes will not be documented in the release notes or the migration manual. If
your UDF relies on macros that are not documented in the ANSYS Fluent Customization
Manual, ANSYS can decline providing technical support. If you observe unusual behavior,
reproduce the behavior without using undocumented macros before contacting the
ANSYS technical support.

Solution

The Fluent data structure for a porous zone includes the material properties of the solid for the equilibrium
thermal model. But there is no macro to access them.

The material properties can be constant, temperature-dependent or user-defined. The different tempera-
ture-dependent methods are not stored. For example, if you first define your specific heat capacity as piece-
wise-linear and then define it as piecewise-polynomial, the first definition is overwritten. However, the con-
stant value is always kept, even if you use a temperature-dependent formulation.

This is important because you need to access the correct material property from your UDF.

To access a property directly from the data structure you can use THREAD_SOLID_MATERIAL or

THREAD_MATERIAL, depending on which part of the structure you want to access. For the solid material of an

equilibrium porous zone you must use THREAD_SOLID_MATERIAL. Both are defined in threads.h.

To access a property, you use the arrow operator. Solid materials have only three properties available:
density, specific heat capacity and thermal conductivity.

THREAD_SOLID_MATERIAL(t)->p[PROP_rho]

THREAD_SOLID_MATERIAL(t)->p[PROP_Cp]

THREAD_SOLID_MATERIAL(t)->p[PROP_ktc]

t is used for the cell thread pointer.

© 2019 ANSYS, Inc. All rights reserved.

PROP_ktc is only valid for isotropic thermal conductivity. For anisotropic thermal conductivity, you can access

PROP_ktc0, PROP_ktc1 and PROP_ktc2. These are not discussed in this document. It can be necessary to

use additional macros to get the correct thermal conductivity for anisotropic behavior.

As mentioned earlier, you can access constant and temperature-dependent values. To get the constant
value, use the dot operator to grab it directly:

THREAD_SOLID_MATERIAL(t)->[PROP_Cp].constant

To access the temperature-dependent value, you must use another macro to calculate it:

MATERIAL_PROP_POLYNOMIAL(THREAD_SOLID_MATERIAL(t),PROP_Cp,C_T(c,t))

Again, t is used for the cell thread pointer and c for the cell index cell_t.

Although the macro has ‘polynomial’ in its name, it returns the correct value for all possible specifications.

© 2019 ANSYS, Inc. All rights reserved.

So far, you can access the two values regardless of which one of them is defined in the case. To use the
correct one, you can check which method is used with the dot operator:

THREAD_SOLID_MATERIAL(t)->p[PROP_Cp].method

This is 0 when constant is active, 1 for any of the temperature-dependent methods and 2 when you have a

UDF hooked for that property.

It is not possible to also grab the value of a UDF through the data structure. Instead, you should define the
calculation of the property in its own function that you can call it separately.

Example

It is often easier to understand the usage of UDF macros with an example. The demonstration case is a
simple straight pipe that has five cell zones. The default air with constant material properties is used. The
first wall is heated with a fixed wall temperature of 500K while the inlet temperature is 300K. The remaining
walls are adiabatic.

The second to fourth cell zones are defined as porous zones with three different solid materials. Fluid-zone-
2 has a constant material hooked, fluid-zone-3 a material with piecewise-linear definition and fluid-zone-4 a
UDF with a comparable definition as zone 3. There is no additional resistance defined in the zones.

© 2019 ANSYS, Inc. All rights reserved.

The source code consists of two parts. The first part defines the material properties for the specific heat and
the thermal conductivity for zone 4.

The second part is an ON_DEMAND function that reports the minimum, maximum and average values of
the used solid material.

To use the example, compile the UDF as libudf, read the case and run the calculation. Once converged,

execute the ON_DEMAD check_porous_properties to print the results into the Fluent console.

Line 1: Only udf.h is required to include

Line 3-6: Calculation of the thermal conductivity as a separate function. This makes it easier to access
it later in the code. It requires the temperature as input parameter

Line 8-11: Calculation of the specific heat capacity as a separate function. It requires the temperature
as input parameter

Line 13-18: Definition of the specific heat that can be hooked in the Fluent materials panel. It calls the
function defined earlier and calculates the sensible enthalpy, as required by Fluent

Line 20-23: Definition of the thermal conductivity that can be hooked in the Fluent materials panel. It just
calls the function with the cell temperature

The rest of the code is quite long and discussed in pieces, that the explanations are closer to the relevant
segments of the code.

#include "udf.h"

real calc_thermal_conductivity(real temperature)
{
 return 100.0 + temperature/5.0;
}

real calc_specific_heat(real temperature)
{
 return 1000.0 + temperature*2.0;
}

DEFINE_SPECIFIC_HEAT(udf_cp, T, Tref, h, yi)
{
 real cp = calc_specific_heat(T);
 *h = cp * (T-Tref);
 return cp;
}

DEFINE_PROPERTY(udf_cond, c, t)
{
 return calc_thermal_conductivity(C_T(c, t));
}

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023

© 2019 ANSYS, Inc. All rights reserved.

Line 26: Function to calculate min, max and average values inside a cell loop. This is needed several
times and should operate on different variables. Therefore, pointers are used as parameters

Line 28-30: Replace the max value if the current value is larger than the old maximum

Line 31-33: Replace the min value if the current value is smaller than the old minimum

Line 34-35: First part of the averaging. The rest must be done after the global reduction outside of the
cell loop

Line 38: Start of the ON_DEMAND function

Line 40: The whole UDF should only be executed on compute nodes. Nothing is done on the host
process

Line 41-47: Variable declarations for domain, thread, cell index and the material properties

/* Calculation of min, max and av values from within a cell loop */
void min_max_av(real *value, real *max, real *min, real *av, real *volume,
real *vol_sum)
{
 if (*value > *max) {
 *max = *value;
 }
 if (*value < *min) {
 *min = *value;
 }
 *vol_sum += *volume;
 *av += *value * *volume;
}

025
026

027
028
029
030
031
032
033
034
035
036

DEFINE_ON_DEMAND(check_porous_properties)
{
#if !RP_HOST
 Domain *d = Get_Domain(1);
 Thread *t;
 cell_t c;
 real min_cp, max_cp, av_cp, cp, cp_sum;
 real min_tc, max_tc, av_tc, tc, tc_sum;
 real density;
 real volume, volume_sum;

038
039
040
041
042
043
044
045
046
047

© 2019 ANSYS, Inc. All rights reserved.

Line 49: Start the loop over all cell threads that exist. The loop ends at the end of the function

Line 51-59: Initialize the variables on each compute node. Min values are large, max values are small.
This makes it easy to find the local and global extreme values

Line 61: Check if the current cell zone is a porous zone. This if condition also ends at the end of the
thread loop

Line 62: Get the density. For solid materials there is only the constant material specification. Although
it is possible to define this value with a UDF, too, this is not commonly done. If you want to
make the UDF cover that case, you need to implement a similar condition as it is used for the
other properties.

Line 65-70: Execute only if specific heat is defined as constant

Line 67-69: Get the specific heat capacity and store it in min, max and average variables

Line 70: Set the volume to 1 for the calculation of the average value later on. This saves a couple of
lines of code to treat the output differently for constant and variable material properties

 thread_loop_c(t, d)
 {
 min_cp = 1000000.0;
 max_cp = 0.0;
 av_cp = 0.0;
 min_tc = 1000000.0;
 max_tc = 0.0;
 av_tc = 0.0;
 cp_sum = 0.0;
 tc_sum = 0.0;
 volume_sum = 0.0;

 if (POROUS_THREAD_P(t)) {
 density = THREAD_SOLID_MATERIAL(t)->p[PROP_rho].constant;

049
050
051
052
053
054
055
056
057
058
059
060
061
062

 /* Specific heat capacity */
 if (THREAD_SOLID_MATERIAL(t)->p[PROP_Cp].method == 0) {
 /* cp is constant */
 min_cp = THREAD_SOLID_MATERIAL(t)->p[PROP_Cp].constant;
 max_cp = min_cp;
 av_cp = min_cp;
 volume_sum = 1.0;

064
065
066
067
068
069
070

© 2019 ANSYS, Inc. All rights reserved.

Line 71-79: Execute only if specific heat is defined as temperature-dependent directly in the materials
panel

Line 73-79: Loop over all cells that are native to the current compute node

Line 75: Calculate the correct specific heat from the definition in the materials panel and the cell tem-
perature

Line 76: Get the cell volume for calculating the average

Line 77: Call the function min_max_av with the references to the different variables to decide if the

specific heat of the current cell is a new maximum or minimum and to build the sum for aver-
aging

Line 80-88: Execute only if specific heat is defined by a UDF

Line 82-88: Loop over all cells that are native to the current compute node

Line 84: Calculate the specific heat for the temperature of the current cell by calling the same function
that is also used in the DEFINE_SPECIFIC_HEAT function

Line 85-86: Call the function to determine min, max and average values

Line 89-92: If the method is not 0, 1 or 2, report an error and end the UDF. This should never be called if

the material specification is valid

 } else if (THREAD_SOLID_MATERIAL(t)->p[PROP_Cp].method == 1) {
 /* temperature-dependent specification of cp */
 begin_c_loop_int(c, t)
 {
 cp = MATERIAL_PROP_POLYNOMIAL(THREAD_SOLID_MATERIAL(t),
 PROP_Cp,C_T(c, t));
 volume = C_VOLUME(c,t);
 min_max_av(&cp, &max_cp, &min_cp, &av_cp, &volume, &volume_sum);
 }
 end_c_loop_int(c, t)

071
072
073
074
075

076
077
078
079

 } else if (THREAD_SOLID_MATERIAL(t)->p[PROP_Cp].method == 2) {
 /* UDF specification of cp */
 begin_c_loop_int(c, t)
 {
 cp = calc_specific_heat(C_T(c,t));
 volume = C_VOLUME(c,t);
 min_max_av(&cp, &max_cp, &min_cp, &av_cp, &volume, &volume_sum);
 }
 end_c_loop_int(c, t)
 } else {
 Message0("Error, access to solid specific heat not possible\n");
 return;
 }

080
801
082
083
084
085
086
087
088
089
090
091
092

© 2019 ANSYS, Inc. All rights reserved.

Line 94: Find the global maximum over all compute nodes and synchronize the variable on all nodes

Line 95: Find the global minimum over all compute nodes and synchronize the variable on all nodes

Line 96: Calculate the global sum over all compute nodes for the nominator and the denominator to
calculate the average value

Line 97: Calculate the volume and mass average for the specific heat capacity (density is constant,
volume and mass average are identical)

Line 98: Reset the volume to 0 for the following calculations

Line 100-133: Repeat the procedure for the thermal conductivity

 max_cp = PRF_GRHIGH1(max_cp);
 min_cp = PRF_GRLOW1(min_cp);
 PRF_GRSUM2(av_cp, volume_sum);
 av_cp /= volume_sum;
 volume_sum = 0.0;

094
095
096
097
098

 /* Thermal conductivity */
 if (THREAD_SOLID_MATERIAL(t)->p[PROP_ktc].method == 0) {
 /* thermal conductivity is constant */
 min_tc = THREAD_SOLID_MATERIAL(t)->p[PROP_ktc].constant;
 max_tc = min_tc;
 av_tc = min_tc;
 volume_sum = 1.0;
 } else if (THREAD_SOLID_MATERIAL(t)->p[PROP_ktc].method == 1) {
 /* temperature-dependent specification of thermal conductivity */
 begin_c_loop_int(c, t)
 {
 tc = MATERIAL_PROP_POLYNOMIAL(THREAD_SOLID_MATERIAL(t),
 PROP_ktc,C_T(c, t));
 volume = C_VOLUME(c,t);
 min_max_av(&tc, &max_tc, &min_tc, &av_tc, &volume, &volume_sum);
 }
 end_c_loop_int(c, t)
 } else if (THREAD_SOLID_MATERIAL(t)->p[PROP_ktc].method == 2) {
 /* UDF specification of thermal conductivity */
 begin_c_loop_int(c, t)
 {
 tc = calc_thermal_conductivity(C_T(c,t));
 volume = C_VOLUME(c,t);
 min_max_av(&tc, &max_tc, &min_tc, &av_tc, &volume, &volume_sum);
 }
 end_c_loop_int(c, t)
 } else {
 Message0("Error, access to solid thermal conductivity not
possible\n");
 return;
 }

 max_tc = PRF_GRHIGH1(max_tc);
 min_tc = PRF_GRLOW1(min_tc);
 PRF_GRSUM2(av_tc, volume_sum);
 av_tc /= volume_sum;

100
101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127
128
129
130
131
132
133

© 2019 ANSYS, Inc. All rights reserved.

Line 135-142: Output of the calculated values

Line 143: End the if-condition that checks for porous threads

Line 144: End the loop over all cell threads

Line 145: End the preprocessor directive to execute the code only on the compute nodes

Line 146: End the ON_DEMAND UDF

Attachments

1. 2059991_demonstration.zip – Demonstration case with complete UDF

Keywords: ANSYS Fluent; UDF; user-defined function; user defined functions; material; property;
properties; solid; porous zone; specific heat capacity; density; thermal conductivity;
access; read; constant; temperature-dependent; temperature dependent; user-specified;
user specified; THREAD_SOLID_MATERIAL; POROUS_THREAD_P;
MATERIAL_PROP_POLYNOMIAL; data structure

Contributors: Akram Radwan

 Message0("Zone %d\n\n", THREAD_ID(t));
 Message0("Specific heat capacity\n");
 Message0("Max: %e | Min: %e | Average: %e\n", max_cp, min_cp,
 av_cp);
 Message0("Thermal conductivity\n");
 Message0("Max: %e | Min: %e | Average: %e\n", max_tc, min_tc,
 av_tc);
 Message0("Density\n");
 Message0("Constant value: %e\n", density);
 Message0("\n\n");
 }
 }
#endif
}

135
136
137

138
139

140
141
142
143
144
145
146

