

Basic Systematic Materials Selection

Homework Solutions

Created by: Kaitlin Tyler and Claes Fredriksson

Questions originally from resources created by Mike Ashby, University of Cambridge

Section 1: Translating Design Requirements

Product	Function	Constraints	Objectives	Free Design Parameter
Car headlight lens	Protect bulb and focus light	 Optical quality material Mold-able material Good durability for fresh water, salt water, UV radiation 	 Minimize cost Maximize hardness (abrasion resistance) 	Shape
Radial turbine blade for aerospace applications	Aids in energy generation via turbine for powering airplanes <i>, etc.</i>	 Fatigue strength at 10⁷ cycles > 360 MPa Maximum service temperature > 900°C 	 Maximize fracture toughness (crack propagation resistance) Maximize yield strength 	Angular velocity of blade
Aircraft cargo door	The door to load and unload freight or luggage in an aircraft. The door can be assumed to be a panel in bending.	 Yield strength > 359 MPa Service temperature range -50 to 120 °C Excellent resistance to fresh and salt water Excellent resistance to UV radiation 	 Minimize mass Minimize CO₂ footprint 	Material choice
Recycling bin	Hold recycling from a household	 Resistant to water, food waste (citric acid (10%)), wine, ethanol, and vegetable oils Good resistance to UV radiation Manufactured by injection molding 	Minimize massMinimize cost	Material shape and choice

Section 2: Applying Constraints and Objectives with Granta EduPack

All answers were generated using the Level 2 database of the 2022R1 Granta EduPack

Car headlight lens

*To demonstrate how the constraints limit our material choices, we will start by plotting our objectives and apply our constraints one at a time

Here is the chart for Hardness-Vickers vs. Price, with material families shown and labeled.

Technical ceramics ŝ Hardness - Vickers Metals and allovs Natural mo ntists 0.0 0.00 Price (USD(kg) silce gies Hardness - Vickers (HV) 108 e (Abyle 10 Polyathylana terephtysiate CFET 0.01 0.00 Price (USD(kg) Hardness - Vickers (HV) 108 18 no terephilipiate (PET) 6.0 hitte Price (USD(kg) 100 100 Hardness - Vickers (HV) 100 10 0.00 Price (USD(kg)

Here is the plot again after we apply the limit for Optical Quality Transparency, with non-passing records removed. Notice how we have dropped from all material families to just two: glasses and polymers.

After applying a limit for Moldability 4-5, only the four polymer options remain. The chart remains the same after applying the limits Acceptable and Excellent for fresh water and salt water. We use both Acceptable and Excellent to avoid eliminating too many candidates.

After applying the limit for acceptable and excellent "UV radiation", only one material remains: PMMA, which is used for car tail lights.

Radial turbine blades

After applying our two constraints (see below), we are left with four materials: Nickel-based super alloys, Nickel-chromium alloys, Silicon nitride, and Tungsten alloys.

Minimum	Maximum	
E		GPb
R		GPs
E	1	GPo
12		
2		MPa
le		MPa
12		MPa
2	-	% stain
E		HV
280		1//Pa
Le T		MPam ⁴ R ³
E		
Minimum	Maximum	
		10
E	8	۹C
E 900	1	- "L
E		- r
	Minimum E E E E E Vinimum E Vinimum E Vinimum E Vinimum E Vinimum E Vinimum	Minimum Maximum I2

Plotting our objectives of fracture toughness and yield strength, we can see that both nickel-based superalloys and tungsten alloys are good candidates, which makes sense considering what real-life turbine blades are made of.

Aircraft cargo door

After applying our constraints via a limit stage, we are left with 12 materials:

- 1. Age-hardening wrought Al-alloys
- 2. Bronze
- 3. Commercially pure titanium
- 4. Nickel
- 5. Nickel-based superalloys
- 6. Nickel-chromium alloys
- 7. Silicon nitride
- 8. Stainless steel
- 9. Titanium alloys
- 10. Tungsten alloys
- 11. Tungsten carbide
- 12. Wrought magnesium alloys

Our chart show many materials with low density and CO_2 footprint for primary production, with age-hardened aluminum and silicon nitride at the top.

 Mechanical properties 				
		Norter	Neceture	
Volume to the second	12	-	191	1.64
Sicarmodulas	L2	-	11	Gfu
Take modulus	E		14	C Ra
Vacata telle	12	1		
e with strength (waters (andr)	E	379	-	NFA
lands stargh	12			MIA
Compressive strength	E	-	10	NFy
ungalace	의	-	1	Same
Harabess - Wickers	<u>ل</u> ع	-	10	H7
alique strength at 3047 system	ej.	-		NR
Procture toughniess	LC.			NPam'93
Vectorical ros scettinem (tendeta)	je je			-
 Thermal properties 				
		Ministan	Havinget	
Making power	L2	[******		× .
Gass temperature	E	-		· ·
Malernerr so vice temperature	L2	120		× .
Minimum service temperature	E.	-	-50	- r
mulma campados os madalos t		-		
- Dumblike writer and equations solutions	2.041			210/124100
a la dudu	A contribute ware feed			
A contract of the second				
a ban an tas la				
				-
				-
I the date and				-
· Constitution and all				
 Dumbility: ructs, of a and solvents 				
 Backbary channels, and your sectors. 				
 Durace by rangers and gave Durace by rangers and gave 				
- purcease part of a formand				
har er has flade anspiller te				•
For a Colomorphic re-				-
Manager and an explanate				•
We wanted a set (standing of)		Freed and		-

Recycling containers

This problem has a unique constraint for a specific processing technique. This can be achieved using Granta EduPack, but requires a Tree Stage, which was not covered in the lecture. The tutorial for the tree stage can be found <u>here</u>.

All of the durability constraints can be applied using a limit stage, while selecting the options for both "Acceptable" and "Excellent". After this step, 42/100 materials remain.

Using a Tree Stage with the ProcessUniverse, we can select injection molding for both thermosets and thermoplastics. After applying this stage, five materials are left: cement, phenolics, polyetheretherketone (PEEK), high density rigid polymer foam.

In our chart, phenolics and PEEK are the most likely candidates. While the foams are much lighter weight, using our intuition we can determine this isn't the best choice.

