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Energy Functional

1. They undergo large deformations without sustaining permanent deformation.

2. All work done is stored as internal energy and is recovered upon unloading.

3. Key: all the work done is recoverable and process is fully reversible.

Follows Second law of thermodynamics!
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Hyperelastic Model

• Area under the curve is the internal or strain energy 
stored in the unit volume of the material.

• It remains constant during loading and unloading so it is 
used for modeling hyperelastic behavior.

• It is defined as a function of strain tensor.

• Stress developed in the part is calculated from the strain 
energy function.

• Strain energy function is usually expressed as additive 
split of deviatoric and volumetric energies.
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Energy Functional

• Stress developed depends on the type of 
strain.

• There are 3 important modes of deformation
1. Uniaxial tension

2. Uniaxial compression

3. Shear

• How do we differentiate the type of strain 
while calculating stress?

• There are two ways to do that.
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Approach I: Principal Stretches

• Let’s consider a cube of side L stretching in one direction.

• Due to Poisson’s effect the sides in other lateral directions 
change.

• Ratio of final length to initial length are principal stretches.

• Stretch of 1 stands for undeformed state; a stretch value 
between 0 and 1 stands for compression and a value of 
stretch >1 stands for tension.
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Cont’d…

• If the cube is stretched by Δy in Y-direction, then

• Where e is nothing but engineering strain.

• This way the principal stretch can be related to the 
engineering strain that is discussed in earlier module.
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Approach II: Strain Invariants

• Another way of representing strain tensor is using strain 
invariants.

• Strain invariants do not change if the reference coordinate 
system changes.

• Strain invariants will remain the same for all modes of 
deformation which makes them ideal for defining strain 
energy function.

• Three invariants that are commonly used are I1, I2 & I3.
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Cont’d…

• Let’s discuss more about the third strain invariant, I3.

• Using simple math it can be shown that I3 is related to a quantity called Jacobian, 
which is nothing but determinant of deformation gradient.

• The Jacobian is ratio of the deformed to the undeformed infinitesimal volume 
elements.

• In other words, it is a measure of change in volume of the element due to 
deformation.

• Therefore, it is used for defining the volumetric component of energy function.
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Model Formulation

• Energy functional is defined in terms of either principal stretches or the strain 
invariants.

• Energy function is also referred to as strain energy density function.

• Stresses in the material are calculated from this function using second law of 
thermodynamics.

• Where S is the second Piola-Kirchoff stress.

• Let’s look at some commonly used formulations.
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Neo-Hookean Model

• Neo-Hookean is the simplest hyperelastic 
material model.

• It is defined using strain invariants

• It has two material parameters: μ and d.

• Physical meaning of parameters:

• μ is the initial shear modulus.

• d is 2/(initial bulk modulus).

Note that shear and bulk modulus change with strain.
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Mooney-Rivlin Model

• Mooney-Rivlin is another commonly used model 
which also uses strain invariants.

• It has 3 material properties: C10, C01, & d.

• Using multiple terms make it more nonlinear so 
it is better suited to model highly nonlinear 
behavior.

• Physical meaning of parameters:
1. Initial shear modulus, μ0 = 2(C10+C01)

2. Initial bulk modulus, K0 = 2/d
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Ogden Model

• Ogden form is another commonly used hyperelastic model.

• It uses principal stretches for defining energy functional.

• Both deviatoric and volumetric parts can have multiple terms.

• Each deviatoric term has 2 material constants and each volumetric term has 1 
material constant.

• Physical meaning of material constants:
1. Initial shear modulus, μ0 =

1

2
σ𝑖=1
𝑁 (α𝑖μ𝑖)

2. Initial bulk modulus, 𝐾0 = σ𝑘=1
𝑁 2

𝑑𝑘
3. α is dimensionless, nonlinearity constant.
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Ogden Foam Model

• Ogden compressible foam model is similar to Ogden form with few modifications to 
account for compressible behavior.

• Where initial shear and bulk modulus are

• In this model the deviatoric and volumetric terms are tightly coupled.

• This model is used for highly compressible behavior.
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Other Energy Functions

1. Polynomial form

2. Yeoh hyperelasticity

3. Gent hyperelasticity

4. Arruda-Boyce hyperelasticity

5. Blatz-ko

6. Etc.
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A Note About Multi-term Models

• We have seen a few models that have multiple terms (e.g., Ogden, Ogden foam, 
Mooney-Rivlin, etc.,).

• Multiple terms increase the nonlinearity of the model and therefor are useful in 
capturing highly nonlinear behavior.

• Phenomenologically, they represent multiple chains in the microstructure with each 
chain type responsible for each term.

Term 1 Term 2 Full Response
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Incompressible vs Compressible Behavior

• In the preceding slides we have seen some forms of energy functions that are 
suitable for incompressible and some for highly compressible materials.

• It is very important to use appropriate model for a given material.

• Physically, if the material is known to be incompressible in nature, then using a 
material model where the deviatoric and volumetric terms are not tightly coupled is 
preferred (e.g., Mooney-Rivlin, Yeoh, Ogden, etc.,).

• If the material is known to be compressible, then using a material model where the 
deviatoric and volumetric terms are tightly coupled is preferred (e.g., Ogden-foam, 
Blatz-ko, etc.,).
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Cont’d…

• Proper usage of volumetric behavior is crucial for accuracy of the calculations.

• It’s important to understand the physical meaning of the incompressibility parameter, 
d, which is used in most hyperelastic models.

• It is related to the initial bulk modulus, K0 as

• Unlike its linear counterpart, Poisson’s ratio, d is not limited to a particular range.

• As value of d decreases, the material tends to be more incompressible.

0 10n

Incompressible Compressible
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