
Converging-Diverging Nozzle

Internal Compressible Flows – Lesson 4



Intro

• In this lesson we will analyze the flow in a converging-diverging 
(CD) Nozzle.

• A CD Nozzle is a variable area passage which is used to 
accelerate gases to higher supersonic speeds.

• It consists of a converging section with minimum area 
occurring at a specific location called the throat.

• Downstream of the throat, the cross-sectional area starts to 
increase, thus creating the diverging section of the CD nozzle.

• It is most commonly used in propulsion systems such as rocket 
engines and after-burners of jet engines.

• It is also used in supersonic wind tunnels.  
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Area – Mach Number Relation

• Using the continuity and the isentropic relations, we can get the 
following equation relating the area to the Mach number: 

• This equation is called the area – Mach number relation, and it 
shows that 𝑀 = 𝑓(𝐴/𝐴*), i.e., the Mach number at any 
location in the duct is a function of the ratio of the local duct 
area to the sonic throat area. 

• Note that there are two values of 𝑀 that correspond to a given 
area ratio (𝐴/𝐴*), a subsonic and a supersonic value.

• The solution to this equation is plotted in the graph on the 
right, clearly showing the subsonic and the supersonic 
branches.
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1D Flow through a CD Nozzle 

• Consider a CD nozzle such that the area ratio at the inlet 𝐴𝑖/𝐴
∗ →

∞. The inlet station feeds from a large reservoir operating at the 
𝑝0, 𝜌0 and 𝑇0 (stagnation properties). 

• In the convergent portion of the nozzle, the subsonic flow is 
accelerated, and the Mach number is dictated by the local value 
of 𝐴/𝐴∗. At the throat, where 𝐴𝑡 = 𝐴∗, we get 𝑀 = 1. 

• In the divergent portion of the nozzle the flow expands 
supersonically, and again the Mach number (supersonic now) is 
governed by the local value of 𝐴/𝐴∗.

• The resulting variations of the pressure, temperature and Mach 
number follow a monotonic increase or decrease as shown on 
the right. 

• 𝑃𝑒, 𝑇𝑒 and 𝑀𝑒 are the pressure, temperature and Mach number at 
the nozzle exit. In an ideal situation the exit pressure 𝑃𝑒 is equal 
to the ambient pressure at the exit (back pressure, 𝑝𝑏) – this 
situation is referred to as “design condition.”  

• Next, we will evaluate the effect of different pressure ratios. 
(𝑝𝑒/𝑝0) across a given nozzle. 
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CD Nozzle Model

• For our analysis, we will use the physical model of the CD nozzle as shown in the figure.

• The nozzle is connected to a tank supplying the inlet station with fixed total pressure and temperature.

• A valve attached to the nozzle exit is adjusted to vary back pressure.

• Except for two special conditions which we will discuss later, the nozzle exit pressure will always be equal to the back pressure. 
For the purpose of our discussion, we will be using the two terms interchangeably and make the distinction when necessary. 

• Let us analyze what happens to the flow as we open the valve and reduce the back pressure from 𝑝𝑒𝐴 > 𝑝𝑒𝐵 > 𝑝𝑒𝐶 > 𝑝𝑒𝐷 >
𝑝𝑒𝐸 > 𝑝𝑒𝐹 > 𝑝𝑒𝐺.
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Fully Subsonic Flow

• Initially, 𝑝𝑒 = 𝑝𝑏 = 𝑝0. Therefore, there will be no flow in the 
nozzle.

• When the back pressure is slightly reduced such that 𝑝𝑒 = 𝑝𝑏 =
𝑝𝑒𝐴, a low-speed flow is established in the nozzle, as indicated by 
Case 𝐴.

• As we start decreasing the back/exit pressure, 𝑝𝑏/𝑝𝑒, from 
𝑝𝑒𝐴to 𝑝𝑒𝐵, this flow starts accelerating as shown by case 𝐵.

• If the flow in the entire nozzle is subsonic, then the flow at any 
axial station within the nozzle can be analyzed using the relations 
derived previously.  

• As the exit pressure is further decreased, the flow is accelerated 
more, leading to a higher Mach number throughout the nozzle 
with the highest being at the throat. Consequently, the pressure is 
also lowest at the throat. 

• At a certain value of 𝑝𝑏 = 𝑝𝑒 = 𝑝𝑒𝐶, the flow just becomes sonic at 
the throat (Case C). At this point 𝐴𝑡 = 𝐴∗and 𝑀𝑡 = 1. 
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Choked Flow – Converging Section

• Decreasing the exit pressure from 𝑝𝑒𝐴 to 𝑝𝑒𝐶, the mass flow 
through the nozzle ( ሶ𝑚 = 𝜌𝑡𝐴𝑡𝑉𝑡) increases until sonic conditions 
are reached at the throat corresponding to 𝑝𝑒𝐶. 

• The mass flow rate through the CD nozzle corresponding to  
condition C, i.e., sonic flow attained at the throat, is given by: 

ሶ𝑚 = 𝜌𝑡𝐴𝑡𝑉𝑡 = 𝜌∗𝐴∗𝑉∗
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• If the back pressure is further 
reduced, the Mach number at the 
throat cannot increase beyond 1.0 
and the mass flow remains constant. 
This condition is referred to as choked 
flow. 

• For 𝛾 = 1.4, the sonic flow at the 
throat corresponds to the pressure 
ratio of Τ𝑝∗ 𝑝0 = 0.528. 
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Choked Flow – Diverging Section

• If the exit pressure is further decreased to a value below the sonic 
condition, 𝑝𝑒𝐷 < 𝑝𝑒𝐶, the flow remains unchanged in the 
converging section. However, an interesting flow phenomenon 
occurs in the diverging section of the nozzle. 

• No isentropic solution is possible in the divergent duct until the 
nozzle exit pressure is adjusted to the specified low value as 
shown earlier for the design condition case. 

• For values of exit pressure above the supersonic design condition 
value, but below 𝑝𝑒𝐶(sonic condition), a normal shock wave is 
observed inside the diverging section as shown. 

• The region ahead of the shock in the diverging section is 
supersonic, while behind the shock the flow is subsonic. As a 
result, the Mach number decreases and the static pressure 
increases toward the exit. 
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Choked Flow – Diverging Section (cont.)

• The location of the normal shock is such that it allows the exit 
pressure to attain the prescribed value 𝑝𝑒𝐷 = 𝑝𝑏 = 𝑝𝑒 at the 
nozzle exit. 

• The flow accomplishes this via the increase of static pressure 
across the shock wave and the pressure increase due to the 
subsonic flow in the remaining diverging section. 

• As we decrease the exit pressure further from 𝑝𝑒𝐷, the shock wave 
moves downstream and closer to the nozzle exit. 

• At a certain value 𝑝𝑒𝐸 < 𝑝𝑒𝐷 the shock will be located precisely at 
the exit.

• Note that in this figure 𝑝𝑒𝐹 represents the proper isentropic value 
for the design exit Mach number and it exists just upstream of the 
normal shock. 

• From this condition, the back pressure and exit pressure will be 
distinct. 

• Now let's reduce the backpressure even further and see what 
happens to the shock at the exit.
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Overexpanded and Underexpanded Nozzles

• When the downstream backpressure (𝑝𝑏) is further reduced such that 
𝑝𝑒𝐹 < 𝑝𝑏 < 𝑝𝑒𝐸 then the flow inside the nozzle is fully supersonic and 
isentropic. However, the nozzle exit pressure is maintained at 𝑝𝑒𝐹

• The increase of exit pressure (𝑝𝑒𝐹) to the backpressure (𝑝𝑏) takes place 
across an oblique shock attached to the nozzle exit, outside the duct 
itself as shown. The nozzle in this case is said to be overexpanded, 
because the pressure at the exit has expanded below the back 
pressure (𝑝𝑒𝐹 < 𝑝𝑏).

• If the back pressure (𝑝𝑏) is further reduced, we reach a stage where 
𝑝𝑏 = 𝑝𝑒𝐹 = 𝑝𝑒. At this point the nozzle is said to be operating at 
design conditions, as we get perfect supersonic expansion.

• If the back pressure is further reduced to 𝑝𝑒𝐺, the flow adjustment 
takes place across expansion waves outside the duct as shown. 

• In this case, the nozzle is said to be underexpanded, because the exit 
pressure is higher than the back pressure, (𝑝𝑒𝐹 > 𝑝𝑏) and the flow is 
capable of further expansion after exiting the nozzle. 
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Effect of Backpressure on CD nozzle Flow 
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1D Flow Solution for CD Nozzle 

• Now that we understand the flow physics of a CD nozzle, lets look at the overall process of analyzing 
the flow quantitatively. 

• We begin the analysis by assuming the flow through the nozzle is entirely isentropic.  Therefore, total 
properties are constant:  𝑝01 = 𝑝02, 𝑇01 = 𝑇02, 𝜌01 = 𝜌02

• Using the isentropic relations and the known exit pressure 𝑝2, we can compute 𝑀2:

• We now calculate 𝐴∗ from the area ratio equation, using 𝐴2 and 𝑀2. This is a provisional critical value 
which we will use to determine if in fact the flow is isentropic and fully subsonic.

• Next, we compare the actual throat area 𝐴𝑡 with 𝐴∗. Two possibilities exist:
‐ 𝐴𝑡 > 𝐴∗ → This indicates that the throat is too large for sonic flow and thus the entire nozzle flow 

is subsonic.
‐ 𝐴𝑡 < 𝐴∗ → This indicates that the throat is too small for subsonic flow and thus the nozzle is 

choked. For this scenario, we can split the analysis into two parts: (A) the converging section and (B) 
the diverging section.

• Let’s consider each of the above cases in detail.
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Fully Subsonic Flow

• If the flow in the entire nozzle is subsonic, then 
calculating the flow at any axial station within the 
nozzle is straightforward. Just use the computed 𝐴∗

from the first step as a reference quantity.

‐ For any station, compute the area ratio 𝐴/𝐴∗ and 
calculate the Mach number from the area ratio 
equation.  You can use tables, charts or solve the 
equation numerically for 𝑀.  

‐ Knowing the total properties and Mach number, 
calculate all flow properties and the mass flow 
rate.  As a check, make sure your calculated mass 
flow rate is consistent at each station.

Note that you only consider the 
subsonic solution here.
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Choked Flow – Converging Section

• If the throat is choked, then the physical area 𝐴𝑡 and 
the reference area 𝐴∗ are the same.  

• Note that the flow in the converging section is 
subsonic and isentropic. Hence, we can calculate any 
station from the inlet to the throat as defined 
previously for the fully subsonic case.

‐ For any station, compute the area ratio 𝐴/𝐴∗ and 
calculate the Mach number from the area ratio 
equation. Use the subsonic solution.

‐ Knowing the total properties and Mach number, 
calculate all flow properties and the mass flow rate.  
Make sure your mass flow rates are consistent with 
the inlet as a check. 
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Choked Flow – Diverging Section

• In the diverging section of the nozzle, there are two 
possibilities: 

‐ The flow at the exit is supersonic.

‐ The flow at the exit is subsonic.  

• As discussed previously, in the subsonic case, there 
must be a normal shock wave in the diverging 
section as the flow is supersonic when it enters the 
diverging section. 

• The subsonic flow downstream of the shock will 
then diffuse (slow down).

Note that which case will occur depends 
entirely on the prescribed exit pressure!
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Choked Flow – Diverging Section (cont.)

• Let’s look at the case of supersonic flow at the exit. 

‐ We first compute a provisional exit supersonic Mach 
number knowing the exit area ratio 𝐴2/𝐴

∗.  We will 
denote this as 𝑀2

′ . 

‐ From this provisional Mach number, we calculate the 
theoretical exit pressure 𝑝2

′ using the isentropic 
relation for pressure ratio (since no shocks exist in 
the diverging passage and 𝑝01 = 𝑝02).

‐ Then compare the computed 𝑝2
′ with our prescribed 

𝑝2:
• 𝒑𝟐 < 𝒑𝟐

′ - For this case, the flow expands outside of the 
nozzle, and thus the actual pressure that will exist at the nozzle 
exit plane is 𝑝2

′ .  Hence, our previous analysis for the 
supersonic exit condition is used.

• 𝒑𝟐 > 𝒑𝟐
′ - For this case, it is clear that the flow must undergo a 

normal shock wave somewhere in the diverging passage and 
then diffuse subsonically to the prescribed exit pressure. We 
will discuss this case next.
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Normal Shock in the Diverging Section

• The problem in this case is that we don’t know the 
exact location of the normal shock wave.  However, 
we can compute the position using a trial and error 
process in conjunction with the shock wave 
relations, shown below for reference.  For clarity, 
we will denote each side of the shock by the 
letters A (upstream) and B (downstream).
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Trial and Error Method for Finding The Shock Wave Position

Begin by guessing an axial 
position 𝑥 in the diverging 
passage. A shock wave is fixed at 
this position with upstream 
downstream stations 𝐴 and 𝐵.

Since the flow from the nozzle 
inlet to point 𝐴 is isentropic, we 
know the total properties at 𝐴. 
From the area ratio equation we 
can calculate 𝑀𝐴 using the 
supersonic solution. Using 𝑀𝐴 and the total 

properties at 𝐴 we then 
calculate the static properties 
at 𝐴 (𝑝𝐴, 𝑇𝐴, 𝜌𝐴). Now apply the shock wave equations to 

obtain 𝑝𝐵, 𝑇𝐵, 𝜌𝐵, and 𝑀𝐵 knowing 𝑀𝐴 and 
the static properties. We can obtain the total 
quantities 𝑝0𝐵, 𝑇0𝐵, 𝜌0𝐵 which will prevail 
through the remainder of the nozzle (which 
flows isentropically).

From the area 𝐴(𝑥) and 𝑀𝐵 we now calculate 
a new 𝐴𝐵

∗ . This reference critical area will also 
prevail from the downstream side of the shock 
to the exit.

Using the exit area 𝐴2, we calculate 𝐴2/𝐴𝐵
∗

and then obtain a provisional subsonic 𝑀2, 
again using the area ratio equation.

Finally, using the isentropic relation for total to static 
pressure ratio, we solve for a provisional exit pressure 
𝑝2
′ .  

• If 𝑝2
′ is greater than the prescribed exit pressure 𝑝2, 

the shock must be closer to the throat and the 
assumed axial position 𝑥 is reduced;  

• Otherwise, we increase 𝑥.  A small increment Δ𝑥 is 
chosen for these adjustments.

Update 𝑥



Summary

• In this lesson, we analyzed 1D compressible flow in a converging-diverging (CD) 
nozzle.

• Several solutions are possible depending on the boundary conditions (particularly the 
exit static pressure).

• The solution methods can easily be codified in a computer program, spreadsheet or 
similar tool. 

• Despite the widespread use of numerical methods for flow solutions, these methods 
are useful for quick design calculations as well as illustrating key features of the CD 
nozzle flow field.




