Free-Free Modal and Pre-stressed Modal Analysis

Modal Analysis – Lesson 5

Modal Analysis: Free-Free Modal Analysis

Let's consider the two systems below: an airplane flying in the sky and a skyscraper. If an engineer plans to perform modal analysis on these two structures, what will be the biggest difference despite the geometry and material differences?

- The airplane is flying in the sky. It's free of boundary conditions.
- Th skyscraper is "fixed" on the ground.

© 2020 ANSYS, Inc.

Modal Analysis: Free-Free Modal Analysis (cont.)

If the modal analysis is for a structure without boundary conditions, it is called a "free-free" modal analysis.

- "Free-free" indicates that the structure is free of load and free of boundary conditions.
- The structure is free to have rigid movement in 6 degrees of freedom in three-dimensional space.

Modal Analysis: Free-Free Modal Analysis (cont.)

For a free-free modal analysis, theoretically, the first 6 natural frequencies must be 0.

- Zero natural frequency means that the structure can have rigid movement without any excitation. This is expected as there is no boundary condition.
- Solving the free-free modal analysis numerically, e.g., by finite element software, you might find the first 8 natural frequencies are not absolutely 0, but they should be numbers very close to 0.0.

Mode	Frequency (Hz)
1	0.
2	0
3	1.9361e-005
4	3.2459e-005
5	3.584e-005
6	5.3911e-005
7	7.8648
8	10.665
9	14.728
10	15.921
11	23.857
12	23.879
13	24.706
14	24.989
15	25.077

© 2020 ANSYS, Inc.

Pre-stressed Modal Analysis

In industry and life, many structures are designed to work under stress. When performing modal analysis on such structures, the pre-stress effect must be considered, because the stress state changes the natural frequency of a structure.

- Guitar strings are pressed at different locations to sound a different note when plucked.
- The concrete plate and beam of a large-span bridge is reinforced by pre-stressed steel bars.

Pre-stressed Modal Analysis: Formulation

How do we consider pre-stress in modal analysis?

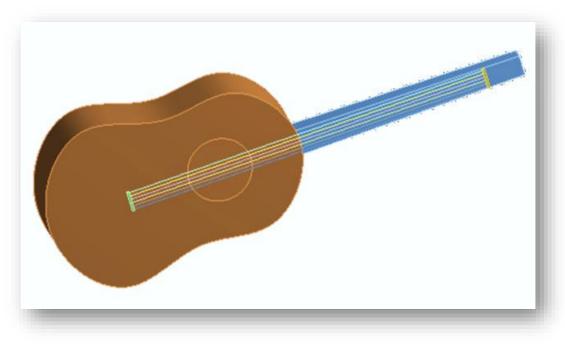
- First, a static analysis is performed to find the stress status of the structure.
- The pre-stress state changes the structural stiffness by adding a stress stiffness matrix to the original structural stiffness.
- The eigenvalue solution is based on the new structural stiffness.

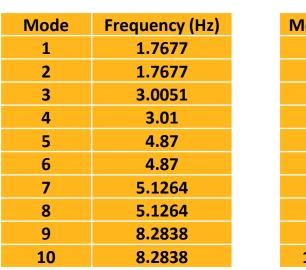
$$[oldsymbol{K}]\{oldsymbol{u}\}=\{oldsymbol{F}\}$$

A linear static analysis is performed $\sigma_0 \rightarrow [S]$

A stress stiffness matrix is calculated from the structural analysis

$$([\boldsymbol{K}] - \omega_i^2[\boldsymbol{M}])\{\boldsymbol{\phi}\}_i = \{0\}$$
$$\downarrow$$
$$([\boldsymbol{K} + \boldsymbol{S}] - \omega_i^2[\boldsymbol{M}])\{\boldsymbol{\phi}\}_i = \{0\}$$


The original free vibration equation is augmented to include the [S] term



Pre-stressed Modal Analysis

Let's calculate the natural frequency of guitar strings to see how pre-stress affects the system.

- A displacement control is applied to the strings to put them in tension.
- The natural frequencies of the strings are drastically increased because of the pre-stressed effect.
- Usually, pre-stressing in tension causes natural frequencies to increase, while pre-stressing in compression causes natural frequencies to decrease.

Before Pre-stress

After Pre-stress

Mode	Frequency (Hz)
1	187.54
2	187.54
3	187.89
4	187.89
5	188.5
6	188.5
7	190.56
8	190.56
9	193.95
10	193.95

