Bolt Representation

Modeling the Bolt and Preload

Structure of Bolt and Nut Assembly

- Let's revisit the structure of bolt and nut Assembly.
 - The bolt head is the flat portion of the bolt which transfers forces to the clamped plates.
 - The nut and the bolt engage via threads which are cut into them. The nut holds the assembly and prevents slippage.
 - Threads are helical groves cut in the shape of V or square. This is where thenut and bolt transfer forces between them.
 - The portion of the bolt between the nut and the bolt head is the grip length.
 - The threadless portion of the bolt is called the shank.
- Some simulation requires modeling the bolt with all details to study the effects of bolt head area, bolt diameter, thread pitch and angle, etc.
- Not all simulations require these details, as bolts are standardized components in many mechanical applications.
- Some simulations can be run with a simplified representation of the bolt as a line body.

Solid Body Versus Line Body

When to use a solid body or a line body

- A solid body can provide detailed results regarding the threads, bolt head area, frictional effects in the bolt and clamped plates, or stress modeling in the compressed area.
- In cases where these results are not a concern, a simplified bolt representation can be used to save solution time as well as computational resources.
- When hundreds of bolts are to be modeled, it becomes computationally expensive.
- In such cases, a line body representation will be more computationally efficient.
- Efficient solution can reduce the solution time and computational resources, thus saving costs.
- A little approximation such as using a line body (beam theory) doesn't decrease the accuracy but provides faster solution.

Solid Body

- The solid bolt parts are discretized using 3D shapes like tetrahedral, prism and hexahedral solid elements.
- Each node has 3 DOFs, resulting in a huge number of equations to be solved.
- A solid body requires less preprocessing time as meshing and contacts can be automated.
- Each element face has multiple integration points; nodal displacements are interpolated to the integration points.
- Stresses are calculated at integration points and extrapolated to the nodes. Further averaged stresses are calculated at the node for the connected elements.
- Solid models are computationally expensive as they require solving a large number of DOFs.
- Solid body simulation results are more accurate. A solid model can capture local effects of stress, strain at a sharp corner, fillet radius, etc.

Solid Body (cont.)

- Let's see an example of bolt meshing with solid elements in Ansys Mesher
- A bolt is meshed with hexahedral mesh. With an element size of 3 mm, the total node count is 12610
- Each node has 3 DOFs. Thus the total number of DOFs= 12610 x 3 = 37830
- It is necessary to use solid element
 - To capture the stress and strain in bolt heads, nuts, local stress in threads, etc.
 - To model the friction between the bolt head and clamped plates
 - To model the effects of the threads under the applied loads

Line Body

- Line body bolts are discretized using 1D 2-node or 3-node beam elements.
- Each node has 3 translational and 3 rotational DOFs.
- Stresses are calculated from section integration points and extrapolated to the nodes. But beam elements cannot calculate averaged stresses.
- We get a reduced state of stress with the line bodies. The solver provides 3 stress components SXX, SXY and SXZ for the line bodies instead of 6 stress components with a solid body..
- Due to low node count, beam models can solve faster and are computationally efficient.
- Line bodies require additional preprocessing work to extract beams, create connections, etc.
- Beam elements can give good estimates of axial and bending stress, but are poor in making shear estimates.

Beam Elements

- Let's see an example of bolt meshing with beam elements in Ansys Mesher
- With the element size of 3mm, the total node count is 39
- Each node has 6 DOFs, so the total number of DOFs= 39 x 6= 234
- Beam elements can be used when
 - Faster solution time is needed
 - There is no need of study stress/strain in bolt heads, nuts or threads
 - The role of bolt is limited to generate preload and interest is in the clamped plate's pressure cone or contact pressure, etc.
 - Bolts are least affected under the loads

Abstract Modeling of a Bolt

- Consider bolts that are modeled with all the details to study the different features.
- Assume threads have enough strength for load carrying and thus can be ignored for the simulation.
 - The threaded portion is replaced with a cylinder
 - A bonded contact is used between the nut and bolt
- If the simulation requires the bolt to generate the preload or support shear load only, the bolt head and the nut can be removed from modeling.
 - Bolt head, nut and the extra length of the bolt is sliced off from the model
 - Bonded or MPC contact is used between the bolt shank and plate holes
- To further simplify the model, the solid cylinder body is replaced with a line body.

Different Types of Bolt Representation

Let's see different types of bolt representation

Bolt-nut using solid elements

- Threaded portion is replaced with cylinder
- Bonded contact is used between nut and bolt

Bolt-nut using solid elements

- Threaded portion is replaced with cylinder
- Frictional contact with geometry correction is used between nut and bolt

Line body using imprint for bolt head

- A line body is used to represent the bolt shank
- The bolt head is imprinted on the plate
- Bonded contact is used between the end point and bolt head imprint

Different Types of Bolt Representation (cont.)

Line body using MPC with plate hole

- A line body is used to represent the bolt shank
- An MPC bonded contact is used between the end point and the plate hole edge

Beam connection (without using geometry)

- Internally creates a beam connecting to two surfaces
- Internally uses remote points to connect the beam to plate surfaces

	Graphics Properties	
	Definition	
	Material	Structural Steel
	Cross Section	Circular
	Radius	2.e-003 m
	Suppressed	No
	Beam Length	5.e-003 m
	Element APDL Name	
	Scope	
	Scope	Body-Body
=	Reference	
	Scoping Method	Geometry Selection
	Applied By	Remote Attachment
	Scope	1 Face
	Body	Flange\Flange1
	Coordinate System	Global Coordinate System
	Reference X Coordinate	1.7321e-002 m
	Reference Y Coordinate	0. m
	Reference Z Coordinate	1.e-002 m
	Reference Location	Click to Change
	Behavior	Rigid
	Pinball Region	All
=	Mobile	
	Scoping Method	Geometry Selection
	Applied By	Remote Attachment
	Scope	1 Face
	Body	Flange\Flange2
	Coordinate System	Global Coordinate System
	Mobile X Coordinate	1.7321e-002 m
	Mobile Y Coordinate	5.e-003 m

Ansys