
Turbulent Boundary Layers

Basics of Turbulent Flows – Lesson 6



Intro to Turbulent Boundary Layers

• The turbulent boundary layer problem does not have an analytical solution.

• Thus our analysis will be based on integral methods describing fundamental 
conservations laws, physics-based arguments, method of matching solutions, and 
empirical correlations.

Illustration of laminar to turbulent transition on a flat plate

TransitionLaminar Turbulent
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2D Turbulent Boundary Layer Equations

• For a fully turbulent, wall-bounded flow, we will employ the 2D, dimensional form of the 
incompressible Reynolds-Averaged Navier-Stokes equations in Cartesian coordinates.

• We will perform an order of magnitude analysis to eliminate negligible terms.
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Order of magnitude assumption 2D assumption

Note that 𝐰′𝟐 is, strictly speaking not 
zero, but its 𝐳-derivative is.
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2D Turbulent Boundary Layer Equations

• The RANS equations then reduce to the following boundary-layer approximation:

𝜕ത𝑢

𝜕𝑥
+
𝜕 ҧ𝑣

𝜕𝑦
= 0

𝜌 ത𝑢
𝜕ത𝑢

𝜕𝑥
+ ҧ𝑣

𝜕ത𝑢

𝜕𝑦
= −

𝜕 ҧ𝑝

𝜕𝑥
+

𝜕

𝜕𝑦
𝜇
𝜕ത𝑢

𝜕𝑦
− 𝜌𝑢′𝑣′

𝜕 ҧ𝑝

𝜕𝑦
= −

𝜕𝑣′2

𝜕𝑦

This term is assumed to be 
small across the boundary 
layer (~0.4% of freestream 
dynamic pressure)

Reynold’s stress term

• Assuming the inviscid region outside the boundary layer where the Bernoulli’s equation 
is satisfied:

𝑑𝑝𝑒 ≈ −𝜌𝑉𝑒𝑑𝑉𝑒
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and the momentum boundary layer equation becomes: Boundary conditions:
ത𝑢 𝑥, 0 = ҧ𝑣 𝑥, 0 = 0 no-slip

ത𝑢 𝑥, 𝛿 = 𝑉𝑒(𝑥) meanflow matching
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Turbulent Boundary Layer Integral Relationships 

• The expressions for displacement and momentum thicknesses derived using integral 
forms of conservation of mass and momentum equations* are:  
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• The integral equation for the momentum thickness contains unknown fluctuations, 
which can be obtained by using turbulence models, discussed in the next lesson. 
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Turbulent Velocity Distribution

• Prandtl’s mixing length hypothesis can be used to deduce the behavior of the 
turbulent velocity profile. The observed behavior of the profile shows that it can 
be divided into three basic zones:

• The region that is influenced by the presence of the wall is called the Inner Layer 
or the Near-wall region. It should be noted that the top of the Near-Wall region 
only comprises about 15% of the total turbulent boundary thickness! This zone is 
further divided into two categories
‐ It is known that very close to a wall the boundary layer is essentially laminar. This thin 

zone is known as the Laminar Sublayer.  

‐ At the top of the laminar sublayer, the flow begins to feel the effect of turbulence, though 
laminar influence is still present. This zone is called the Buffer Zone.

‐ The freestream turbulence effects slowly increase in strength through the inner layer, and 
the laminar behavior is lost, although the presence of the wall still influences the flow.

• Going beyond the Near-wall Region leads us to the edge of the boundary layer. 
There, freestream turbulence effects dominate, and this region is thus called the 
Outer Layer.

• The inner layer is transitioned to the outer layer through the Overlap Layer.

Buffer Zone

Near-wall 
Region 

(inner layer)

Outer Layer

Overlap 
layer

Laminar Sublayer
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Turbulent Boundary Layer: Inner, Outer and Overlap Layers

• Prandtl and Karman reasoned the following:
‐ The inner layer depends on wall shear stress, density and viscosity, and distance from the wall, but 

not on meanflow:

‐ The outer layer depends on the mean flow pressure gradient, layer thickness and wall shear stress, 
but is independent of viscosity:

‐ The overlap layer is a smooth blend of inner and outer layers over a finite distance:
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𝛿
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𝛿

𝜏𝑤

𝑑𝑝𝑒
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ത𝑢𝑖𝑛𝑛𝑒𝑟 = ത𝑢𝑜𝑢𝑡𝑒𝑟

Here 𝑣∗ - wall-friction velocity, and it is frequently used in turbulent flow analysis. 
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Turbulent Boundary Layer: Inner, Outer and Overlap Layers (cont.)

• Matching inner and outer solutions lead to the appearance of logarithmic functions, 
and the expressions for the inner and outer layers become:

𝑢+ =
1

𝜅
ln 𝑦+ + 𝐵, 𝑉𝑒

+ − 𝑢+ = −
1

𝜅
ln
𝑦

𝛿
+ 𝐴(𝜁) 𝑢+ =

ത𝑢

𝑣∗
, 𝑦+ =

𝑦𝑣∗

𝜈
𝜅 ≈ 0.4, 𝐵 ≈ 5.5

• 𝐴 in the outer layer expression is a function of the mean flow pressure gradient and 
potentially other parameters.

• Classical values of constants 𝜅 and 𝐵, measured back in 1930 by Prandtl’s student 
Nikuradse, are shown.

• More recent measurements suggest slightly different values: 𝜅 ≈ 0.41, 𝐵 ≈ 5.0.

• A very thin region next to the wall is dominated by the viscosity. It is called 
the viscous sublayer, where the velocity profile is linear: 𝑢+ = 𝑦+, 𝑦+ ≤ 5

Inner layer Outer layer Empirical constants Non-dimensionalization
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Log layer

• Extents of different layer 
regions are approximately:

Laminar sublayer

Universal Law of the Wall

𝑢+= 𝑦+

Inner Layer 

Data [1]

Laminar
Sublayer

Buffer
Zone

Log Law
Region

Outer Layer 

𝑢+= 2.5 ln 𝑦+ + 5.45

• There is a remarkable 
agreement between log 
profile distribution deduced 
from physics principals and 
experimental data!

30 ≤ 𝑦+

≤ 350

0 ≤ 𝑦+

≤ 5

5 ≤ 𝑦+

≤ 30

2% ≤ Τ𝑦 𝛿
≤ 20%

Buffer layer

0.2% ≤ Τ𝑦 𝛿
≤ 2%

0% ≤ Τ𝑦 𝛿
≤ 0.2%
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Spalding’s Law of the Wall

• Spalding (1961) proposed the following composite blend of the law of the wall which 
is valid for the entire wall region 0 ≤ 𝑦+ ≤ 350:

𝑦+ = 𝑢+ + 𝑒−𝜅𝐵 𝑒𝜅𝑢
+
− 1 − 𝜅𝑢+ −

𝜅𝑢+ 2

2
−

𝜅𝑢+ 3
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Outer Layer Correlation

• The outer layer is sensitive to meanflow pressure gradient and starts deviating from the log 
law at 𝑦+~350.

• Coles (1956) noted this deviation has a wake shape, and suggested to add a wake function 
correction:

𝑢+ =
1

𝜅
ln 𝑦+ + 𝐵 +

2Π

𝜅
𝑓

𝑦

𝛿

Log layer Wake function

𝑓 0 = 0, 𝑓 𝛿 = 1, Π = Τ𝜅𝐴 2 Coles wake parameter

• A commonly used curve fit for the wake function is:
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3
Taylor series approximation 
convenient for integration

• Integration of this velocity profile over the entire boundary layer gives estimates for 𝛿∗, 𝜃
and 𝐶𝑓 :
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𝜏𝑤

𝑑𝑝𝑒
𝑑𝑥

Correlation for 𝚷
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• Which, after some light math, gives the following turbulent boundary layer correlations:

• From empirical data, the one-seventh power law profile can be assumed (Prandtl):

• Further curve fitting yields the correlation for skin friction:

Turbulent Boundary Layer Correlations

• Assuming meanflow equilibrium (zero pressure gradient), the velocity profile can be described by the 
wake law with Π = 0.45, and profile evaluation at 𝑦 = 𝛿 gives the relation between 𝐶𝑓 and 𝑅𝑒𝛿:

ത𝑢

𝑉𝑒
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𝛿
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⟹
𝜃

𝛿
=
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𝐶𝑓 = 0.027𝑅𝑒𝑥
−1/7

𝐶𝑓 = 0.02𝑅𝑒𝛿
−1/6

2

𝐶𝑓

1/2

= 2.44 ln 𝑅𝑒𝛿
𝐶𝑓

2

1/2

+ 7.2 𝐶𝑓 = 2
𝑑𝜃

𝑑𝑥

𝑅𝑒𝛿 = 0.16𝑅𝑒𝑥
6/7 ൗ𝛿 𝑥 = 0.16𝑅𝑒𝑥

−1/7

• Note that original Prandtl formulas frequently quoted in the literature are less accurate!

ൗ𝛿 𝑥 = 0.37𝑅𝑒𝑥
−1/5 𝐶𝑓 = 0.058𝑅𝑒𝑥

−1/5 original Prandtl formulas (1927) 
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Summary

• We looked into the fundamentals of turbulent boundary layers and derived some 
useful estimates and correlations.

• One of the most significant topics covered was the universal law of the wall which is 
the backbone of numerical wall treatments in all CFD codes.

• Comprehensive discussion of turbulent boundary layers is extensive and scattered 
among different textbooks and journal papers, and we limited our discussion only to 
common derivations and correlations. 

13



Appendix
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Boundary Layer Integral Equations

• Consider the boundary layer as shown below. We define a control volume consisting of the plate, an inlet at 
the leading edge, a station a distance 𝐿 downstream of the leading edge, and a streamline at a distance ℎ
from the plate that meets the boundary layer at station 𝐿.

• Note that the velocity profile is an input to this analysis, and so will apply to both laminar and turbulent 
boundary layers. 

ℎ

𝑥

𝑦
Viscous zone

Boundary layer edge

𝑢(𝑥, 𝑦)
𝑉∞

𝜌∞

𝜇∞

𝐿

Inviscid zone

0

𝛿
ℎ0

ℎ𝐿
Streamline outside boundary layer
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Mass Conservation Integral Equation

• Conservation of mass for the boundary layer control volume under the assumption of constant density gives:

• Denoting ℎ𝐿 = 𝛿∗ + ℎ0, the above equation can be rewritten as:

• In the limit ℎ𝐿 → ∞, the above equation gives the formal definition of displacement thickness:

ඵ𝑉 ∙ 𝑑 Ԧ𝐴 =න

0

ℎ𝐿

𝑢 𝑑𝑦 − න

0

ℎ0

𝑉∞𝑑𝑦 = 0

𝛿∗ = න

0

ℎ𝐿

1 −
𝑢

𝑉∞
𝑑𝑦

𝛿∗ = න

0

∞

1 −
𝑢

𝑉∞
𝑑𝑦
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• The displacement thickness represents the distance by which streamlines outside of the boundary layer are 
displaced by the layer. 

• It is a measure of blockage of the external flow due to the formation of boundary layers.

• The same definition of the displacement thickness is used for turbulent boundary layers, where the velocity is 
taken in time-averaged sense.

• Unlike the boundary layer thickness based on 0.99𝑉∞, which is not trivial to measure experimentally, the 
displacement thickness can be easily deduced from velocity measurements taken across the boundary layer.

Boundary Layer Displacement Thickness

𝛿∗

Edge of boundary layer

𝑉∞
𝑦

𝑥
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Momentum Conservation Integral Equation

• Conservation of momentum for the boundary layer control volume under the assumption of constant density 
gives:

• Assuming:

• The above equation can be written in the limit ℎ𝐿 → ∞ as:

• This non-dimensional quantity is called momentum thickness of the boundary layer, which is commonly denoted 
by 𝜃:

ඵ𝑢 𝜌𝑉 ∙ 𝑑 Ԧ𝐴 = න
0
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0

ℎ0

𝑉∞ 𝜌𝑉∞ 𝑑𝑦 = −𝐷, where 𝐷 is drag
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𝑉∞
1 −
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𝑑𝑦



19

• The momentum thickness describes the loss of momentum due to the presence of the boundary layer as 
compared to an equivalent inviscid flow.

• The definition of momentum thickness holds for any incompressible boundary layer, laminar or turbulent.

• For the boundary layer over a flat plate, the momentum thickness is equivalent to the non-dimensional drag.

• For an arbitrary boundary layer, however, the momentum thickness is not equal to the non-dimensional drag.

• The ratio of displacement thickness and momentum thickness is called the shape factor, and it is often used in 
the boundary layer analysis:

Momentum Thickness

𝐻 =
𝛿∗

𝜃
> 1

𝑢

𝑉∞

1 −
𝑢

𝑉∞ 𝑢

𝑉∞
1 −

𝑢

𝑉∞

1

0 𝑦

= 𝛿∗

= 𝜃




