Film Coefficient

Thermal Convection in Heat Transfer – Lesson 2

Modeling Convection: Solvers

- Simulates heat transfer in solids with convection as a boundary condition
- Is computationally less expensive
- Convection is reduced to two parameters film coefficient and bulk temperature

A conduction-based solver is used in this course

Computational Fluid Dynamics (CFD) Solver

- Solves for fluid flow and energy equation in the fluid, as well as in solids
- Is computationally expensive
- Directly solves heat transfer between fluid and solid
- Does not use film coefficient as for conduction-based solver

Convective Heat Transfer Rate

Convection is a complex process (a combination of advection and diffusion) where heat energy is transferred between a body and a surrounding fluid.

• The following equation gives the convective heat transfer rate:

 $\boldsymbol{Q} = \boldsymbol{h} \cdot \boldsymbol{A}(\boldsymbol{T}_s - \boldsymbol{T}_B)$

Where:

- Q = Heat transfer rate
- h = Film coefficient
- A= Area of body in contact with fluid
- T_s = Surface temperature
- T_B = Bulk fluid temperature

Film Coefficient (Heat Transfer Coefficient)

• Rewriting the convection equation in terms of the **convective heat flux rate**, **q**_c:

 $q_c = Q/A = h \cdot (T_s - T_B) = h \cdot dT$

where **dT** = temperature difference between the solid surface and the fluid.

- The film coefficient h may be thought of as the amount of heat flux (W/m²) needed to cause a unit difference in temperature between surface and bulk temperature.
- Film coefficients may be obtained by:
 - Analytical methods that involve solving the mass, momentum and energy equations; however, analytical solutions are available only for very simple situations.
 - Through careful experiments the equations suggested for convective heat transfer coefficients are mostly empirical.
 - Using CFD analysis and extrapolation for laminar and turbulent flow.
- The S.I. unit of *h* is W/m².K. In Imperial units, the film coefficient *h* is expressed in BTU/h.ft².°F, where BTU stands for British Thermal Unit and h in the denominator represents hour.

Factors Affecting the Film Coefficient

The heat transfer coefficient is a function of the physical variables expressed below:

h = f (fluid properties, velocity field, geometry, surface roughness, temperature, etc.)

From the table below, it can be seen that the value of **h** depends upon:

- Fluid properties: The higher the viscosity, the higher the *h* value. For example *h_{water}>h_{air}*. Between cold water and cold air, water feels colder immediately.
- Fluid velocity: Forced convection has higher *h* than natural convection. For example *h_{forced air}* > *h_{free air}*. When a fan is switched on, the air removes more heat from the object compared to when the fan is switched off.

Convection Process	Film Coefficient (W/m²·K)				
	Air	Water	Gas	Oil	Molten Metals
Free/ Natural	10-100	50-3000	5-37	50-350	-
Forced	10-1000	50-10000	10-350	300-1700	2000-45000

Factors Affecting the Film Coefficient (cont.)

From the graph below it can be seen that the value of **h** depends upon:

- Temperature: The higher the temperature difference between surface and fluid, the higher the *h* value.
- Geometry: *h* value increases with sharp turns and bends in a pipe.

© 2020 ANSYS, Inc.

Factors Affecting the Film Coefficient (cont.)

From the image/graph below it can be seen that the value of **h** depends upon:

- Geometry: Due to buoyancy effects a vertical plate has higher *h* compared to a horizontal plate. That is why heat sinks have vertical fins/pins.
- Surface roughness (Ra): At a given surface temperature, a higher value of **Ra** higher increases the turbulence and hence increases **h**.

© 2020 ANSYS, Inc.

Bulk Temperature (Fluid Ambient Temperature)

As seen in a previous slide, the second input required to solve the equation below is **the bulk temperature**, T_B .

$$Q = h \cdot A(T_s - T_B)$$

- This temperature represents the temperature of the bulk or average temperature of the fluid and is also called the *fluid ambient temperature*.
- If $T_B > T_S$ heat flows from the fluid into the surface and vice-versa.
- T_B can be a direct input or a part of a fluid network.

Conjugate Heat Transfer Problem

- In fluid dynamics analysis *h* is not used; instead, a conjugate heat transfer problem is solved.
- A conjugate heat transfer problem deals with heat transfer in solids (conduction dominates) and fluids (convection dominates). Also, a fluid will have motion—energy transport, fluid viscosity and change in fluid density. Solving such a problem is complex and time-consuming.
- Hence, using a conduction-based solver having a convection boundary condition is quite useful (faster, easy to solve and time-saving) because it models convection without the fluid flow. Some examples are heat exchangers and heat sinks.

A Few Important Points

- When applying the convection boundary condition, h and T_B should be defined appropriately by the analyst, as fluid flow is not being modeled.
- We indicated earlier that **h** is function of temperature and if we write **h=f(T)** then the convection equation becomes nonlinear.
- Even if the value of *h* changes, solutions are relatively quick (compared with CFD).
- Design studies can easily be performed to study the relationship of temperature with variation of h or T_B . This is useful because we are simplifying a conjugate heat transfer problem with two parameters (h and T_B) and can perform parametric studies to provide upper and lower bounds for the problem. Hence, h and T_B can be used with some conservatism.

