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Why talk about transmission lines?
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

Consider the following circuit diagram:

switch

By conventional circuit theory (under the electrically-small-system assumption), 
closing the switch will instantly result in the voltage V appearing across the resistor R.



Why talk about transmission lines?
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

But suppose you have…

switch

If the switch is far away from the load, then closing the switch will not instantaneously 
result in the voltage V appearing at the load.  Rather, there will be a delay as the signal 
is transmitted down the line.

electrically
long transmission
line



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

Let us look closely at a section of transmission line, of length Δℓ, where Δℓ is electrically 
small (Δℓ << λ)

this wire has some inductance

this gap has some capacitance

Δℓ



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

So, each piece of the long line has an inductance-per-length L and a capacitance-per-
length C, which may be modeled as shown above.

Δℓ

Δℓ

z

Note that the total capacitance of this length Δℓ of 
transmission line is CΔℓ, and the total inductance is LΔℓ.



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

In the most general case, the line may also have resistive losses, which can be added 
to the model as:

z

Note that here, the total series resistance of this length Δℓ of 
transmission line is RΔℓ, and the total shunt conductance is GΔℓ.

Δℓ



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

Since we have assumed that Δℓ is electrically small, we can analyze this circuit using 
normal circuit analysis.

Δℓ

z

This system has input voltage V(z,t), input current I(z,t), output voltage V(z+Δℓ,t) 
and output current I(z+Δℓ,t).  



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

Using Kirchoff’s voltage law, we can write:

Δℓ

z

𝑉 𝑧, 𝑡 − 𝑅Δℓ𝐼 𝑧, 𝑡 − 𝐿Δℓ
𝑑𝐼(𝑧, 𝑡)

𝑑𝑡
− 𝑉 𝑧 + Δℓ, 𝑡 = 0

which can be rearranged to show:

𝑉 𝑧 + Δℓ, 𝑡 − 𝑉 𝑧, 𝑡

Δℓ
+ 𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐼(𝑧, 𝑡) = 0

and, taking the limit as Δℓ→0, this becomes the spatial derivative:

𝑑𝑉 𝑧, 𝑡

𝑑𝑧
+ 𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐼(𝑧, 𝑡) = 0



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

Similarly, by Kirchoff’s current law:

Δℓ

z

𝐼 𝑧, 𝑡 − 𝐺Δℓ𝑉(𝑧 + Δℓ, 𝑡) − 𝐶Δℓ
𝑑𝑉(𝑧 + Δℓ, 𝑡)

𝑑𝑡
− 𝐼 𝑧 + Δℓ, 𝑡 = 0

which can be rearranged to show:

𝐼 𝑧 + Δℓ, 𝑡 − 𝐼 𝑧, 𝑡

Δℓ
+ 𝐶

𝑑𝑉 𝑧 + Δℓ, 𝑡

𝑑𝑡
+ 𝐺𝑉(𝑧 + Δℓ, 𝑡) = 0

and, taking the limit as Δℓ→0, this becomes the spatial derivative:

𝑑𝐼 𝑧, 𝑡

𝑑𝑧
+ 𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
+ 𝐺𝑉(𝑧, 𝑡) = 0



The Telegrapher’s Equations
Electrically large circuits require more advanced analysis techniques than those 
taught for electrically-small systems.

𝑑𝐼 𝑧, 𝑡

𝑑𝑧
+ 𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
+ 𝐺𝑉(𝑧, 𝑡) = 0

𝑑𝑉 𝑧, 𝑡

𝑑𝑧
+ 𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐼(𝑧, 𝑡) = 0

These are the telegrapher’s equations, which relate voltage and current along a 
transmission line.

switch

electrically long 
transmission line

1

2



A wave equation relates a quantity’s second derivative 
in time to its second derivative in space.

The Wave Equations
The Telegrapher’s Equations may be used to derive the wave equations for 
voltage and current along a transmission line.

𝑑𝐼 𝑧, 𝑡

𝑑𝑧
= −𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
− 𝐺𝑉(𝑧, 𝑡)

𝑑𝑉 𝑧, 𝑡

𝑑𝑧
= −𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
− 𝑅𝐼(𝑧, 𝑡)

Current and voltage on a transmission line may be described using wave equations, 
which can be derived from the telegrapher’s equations as follows:

1 2

𝑑

𝑑𝑧

𝑑2𝑉(𝑧, 𝑡)

𝑑𝑧2
= −𝐿

𝑑2𝐼 𝑧, 𝑡

𝑑𝑧𝑑𝑡
− 𝑅

𝑑𝐼(𝑧, 𝑡)

𝑑𝑧
1

𝑑

𝑑𝑡
2

𝑑2𝐼(𝑧, 𝑡)

𝑑𝑧𝑑𝑡
= −𝐶

𝑑2𝑉 𝑧, 𝑡

𝑑𝑡2
− 𝐺

𝑑𝑉(𝑧, 𝑡)

𝑑𝑡

𝑑2𝑉(𝑧, 𝑡)

𝑑𝑧2
= −𝐿 −𝐶

𝑑2𝑉 𝑧, 𝑡

𝑑𝑡2
− 𝐺

𝑑𝑉(𝑧, 𝑡)

𝑑𝑡
− 𝑅 −𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
− 𝐺𝑉(𝑧, 𝑡)

𝑑2𝑉(𝑧, 𝑡)

𝑑𝑧2
= 𝐿𝐶

𝑑2𝑉 𝑧, 𝑡

𝑑𝑡2
+ 𝐿𝐺 + 𝑅𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐺𝑉(𝑧, 𝑡)

Wave equation 
for voltage



A wave equation relates a quantity’s second derivative 
in time to its second derivative in space.

The Wave Equations
The telegrapher’s equations may be used to derive the wave equations for 
voltage and current along a transmission line.

𝑑𝐼 𝑧, 𝑡

𝑑𝑧
= −𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
− 𝐺𝑉(𝑧, 𝑡)

𝑑𝑉 𝑧, 𝑡

𝑑𝑧
= −𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
− 𝑅𝐼(𝑧, 𝑡)

Current and voltage on a transmission line may be described using wave equations, 
which can be derived from the telegrapher’s equations as follows:

1 2

𝑑

𝑑𝑧

𝑑2𝐼(𝑧, 𝑡)

𝑑𝑧2
= −𝐶

𝑑2𝑉 𝑧, 𝑡

𝑑𝑧𝑑𝑡
− 𝐺

𝑑𝑉(𝑧, 𝑡)

𝑑𝑧
2

𝑑

𝑑𝑡
1

𝑑2𝑉(𝑧, 𝑡)

𝑑𝑧𝑑𝑡
= −𝐿

𝑑2𝐼 𝑧, 𝑡

𝑑𝑡2
− 𝑅

𝑑𝐼(𝑧, 𝑡)

𝑑𝑡

𝑑2𝐼(𝑧, 𝑡)

𝑑𝑧2
= −𝐶 −𝐿

𝑑2𝐼 𝑧, 𝑡

𝑑𝑡2
− 𝑅

𝑑𝐼(𝑧, 𝑡)

𝑑𝑡
− 𝐺 −𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
− 𝑅𝐼(𝑧, 𝑡)

𝑑2𝐼(𝑧, 𝑡)

𝑑𝑧2
= 𝐿𝐶

𝑑2𝐼 𝑧, 𝑡

𝑑𝑡2
+ 𝐿𝐺 + 𝑅𝐶

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐺𝐼(𝑧, 𝑡)

Wave equation 
for current



The Wave Equations
The Telegrapher’s Equations may be used to derive the wave equations for 
voltage and current along a transmission line.

𝑑2𝐼(𝑧, 𝑡)

𝑑𝑧2
= 𝐿𝐶

𝑑2𝐼 𝑧, 𝑡

𝑑𝑡2
+ 𝐿𝐺 + 𝑅𝐶

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐺𝐼(𝑧, 𝑡)

𝑑2𝑉(𝑧, 𝑡)

𝑑𝑧2
= 𝐿𝐶

𝑑2𝑉 𝑧, 𝑡

𝑑𝑡2
+ 𝐿𝐺 + 𝑅𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡
+ 𝑅𝐺𝑉(𝑧, 𝑡)

This is the wave equation for voltage, which relates its 
second derivative in time to its second derivative in 
space.

This is the wave equation for current, which relates its 
second derivative in time to its second derivative in 
space.

Note that the wave equations for voltage and current are identical.  These differential 
equations will also have identical solutions.



Lossless Transmission Lines
For a lossless line, the telegrapher’s equations and wave equations can be 
simplified.

𝑑2𝐼(𝑧, 𝑡)

𝑑𝑧2
= 𝐿𝐶

𝑑2𝐼 𝑧, 𝑡

𝑑𝑡2
𝑑2𝑉(𝑧, 𝑡)

𝑑𝑧2
= 𝐿𝐶

𝑑2𝑉 𝑧, 𝑡

𝑑𝑡2

On a lossless transmission line, the series resistance vanishes (R=0), and the shunt 
conductance vanishes (G=0).  For this case, the telegrapher’s equations become:

𝑑𝐼 𝑧, 𝑡

𝑑𝑧
= −𝐶

𝑑𝑉 𝑧, 𝑡

𝑑𝑡

𝑑𝑉 𝑧, 𝑡

𝑑𝑧
= −𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡

and the wave equations become:

The Lossless Telegrapher’s Equations

The Lossless Wave Equations



Wave Equation Solutions
Current and voltage will propagate on the line according to the solutions to 
the wave equations.

We will assume that both voltage and current are time-harmonic (~ 𝑒𝑗𝜔𝑡).  In other 
words, we assume that:

𝑑2𝑉(𝑧)

𝑑𝑧2
𝑒𝑗𝜔𝑡 = −𝜔2𝐿𝐶𝑉 𝑧 𝑒𝑗𝜔𝑡 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 𝑉(𝑧)𝑒𝑗𝜔𝑡 + 𝑅𝐺𝑉(𝑧)𝑒𝑗𝜔𝑡

This allows us to write the wave equations as:

𝑉 𝑧, 𝑡 = 𝑉(𝑧)𝑒𝑗𝜔𝑡

𝐼 𝑧, 𝑡 = 𝐼(𝑧)𝑒𝑗𝜔𝑡

𝑑2𝐼(𝑧)

𝑑𝑧2
𝑒𝑗𝜔𝑡 = −𝜔2𝐿𝐶𝐼 𝑧 𝑒𝑗𝜔𝑡 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 𝐼(𝑧)𝑒𝑗𝜔𝑡 + 𝑅𝐺𝐼(𝑧)𝑒𝑗𝜔𝑡

Or, by rearranging:

𝑑2𝑉(𝑧)

𝑑𝑧2
= 𝑉(𝑧) 𝑅𝐺 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 − 𝜔2𝐿𝐶

𝑑2𝐼(𝑧)

𝑑𝑧2
= 𝐼(𝑧) 𝑅𝐺 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 − 𝜔2𝐿𝐶



Propagation Constant

The complex propagation constant γ is defined as:

𝛾2 = 𝑅𝐺 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 − 𝜔2𝐿𝐶

or,

𝛾 = 𝑅𝐺 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 − 𝜔2𝐿𝐶

We will also define the attenuation constant α and the lossless propagation 
constant β as the real and imaginary parts of 𝛾, respectively.

𝛾 = 𝛼 + 𝑗𝛽

Note that, in the lossless case, 
𝛾 = 𝑗𝜔 𝐿𝐶
𝛾 = 𝛼 + 𝑗𝛽
𝛾 = 𝑗𝛽

where

𝛼 = 0

and 𝛽 = 𝜔 𝐿𝐶

We will pause here to define the complex propagation constant



Wave Equation Solutions
Current and voltage will propagate on the line according to the solutions to 
the wave equations.

Using our definition of the complex propagation constant, we can rewrite the wave 
equations as:

𝑑2𝑉(𝑧)

𝑑𝑧2
= 𝛾2𝑉(𝑧)

𝑑2𝐼(𝑧)

𝑑𝑧2
= 𝛾2𝐼(𝑧)

which are differential equations with solutions of either sines and cosines or complex 
exponentials.  We will choose to use complex exponentials.

𝑉 𝑧 = Vo
+e−𝛾𝑧 + Vo

−e+𝛾𝑧

𝐼 𝑧 = Io
+e−𝛾𝑧 + Io

−e+𝛾𝑧

where Vo
+, Vo

−, Io
+, and Io

− are variables corresponding to magnitude.



Wave Equation Solutions
Current and voltage will propagate on the line according to the solutions to 
the wave equations.

𝑉 𝑧 = Vo
+e−𝛾𝑧 + Vo

−e+𝛾𝑧 𝐼 𝑧 = Io
+e−𝛾𝑧 + Io

−e+𝛾𝑧

Each of these solutions consists of two terms.  The terms including 𝒆−𝜸𝒛 propagate in 
the +z direction (forward propagation), and the terms including 𝒆+𝜸𝒛 propagate in 
the –z direction (backward propagation).

Vo
+ e−𝛾𝑧, Io

+e−𝛾𝑧

Vo
− e+𝛾𝑧, Io

−e+𝛾𝑧forward propagating wave

z

backward propagating wave

The total voltage on the transmission line is the sum of the forward-propagating part 
and the backward propagating part.  

The total current is similarly the sum of the forward and backward propagating 
terms.



Wave Equation Solutions
Current and voltage will propagate on the line according to the solutions to 
the wave equations.

Recall: we said earlier that

so our total solutions for voltage and current are:

𝑉 𝑧, 𝑡 = Vo
+e−𝛾𝑧𝑒𝑗𝜔𝑡 + Vo

−e+𝛾𝑧𝑒𝑗𝜔𝑡

𝐼 𝑧, 𝑡 = Io
+e−𝛾𝑧𝑒𝑗𝜔𝑡 + Io

−e+𝛾𝑧𝑒𝑗𝜔𝑡

𝑉 𝑧, 𝑡 = 𝑉(𝑧)𝑒𝑗𝜔𝑡

𝐼 𝑧, 𝑡 = 𝐼(𝑧)𝑒𝑗𝜔𝑡

but this is commonly written in phasor form, which suppresses the harmonic term:

𝑉 𝑧, 𝑡 = Vo
+e−𝛾𝑧 + Vo

−e+𝛾𝑧 = V∘
+e−𝛼𝑧e−j𝛽𝑧 + V∘

−e+𝛼𝑧e+j𝛽𝑧

𝐼 𝑧, 𝑡 = Io
+e−𝛾𝑧 + Io

−e+𝛾𝑧 = I∘
+e−𝛼𝑧e−j𝛽𝑧 + I∘

−e+𝛼𝑧e+j𝛽𝑧

or it may be written equivalently in the time domain:

𝑉 𝑧, 𝑡 = Vo
+e−𝛼𝑧cos(𝜔𝑡 − 𝛽𝑧) + Vo

−e+𝛼𝑧cos(𝜔𝑡 + 𝛽𝑧)

𝐼 𝑧, 𝑡 = Io
+e−𝛼𝑧cos(𝜔𝑡 − 𝛽𝑧) + Io

−e+𝛼𝑧cos(𝜔𝑡 + 𝛽𝑧)



Characteristic Impedance
The ratio of voltage to current at any point along a transmission line is fixed 
by the characteristics of the line.

Let us look at just the forward-propagating components of voltage and current, in 
phasor form:

𝑉 𝑧, 𝑡 = Vo
+e−𝛾𝑧

𝐼 𝑧, 𝑡 = Io
+e−𝛾𝑧

and recall the first of the telegrapher’s equations: 

𝑑𝑉 𝑧, 𝑡

𝑑𝑧
= −𝐿

𝑑𝐼 𝑧, 𝑡

𝑑𝑡
− 𝑅𝐼(𝑧, 𝑡)

We can combine these equations as follows:

𝑑

𝑑𝑧
Vo
+e−𝛾𝑧 = −𝐿

𝑑

𝑑𝑡
Io
+e−𝛾𝑧 − 𝑅 Io

+e−𝛾𝑧

−𝛾Vo
+e−𝛾𝑧 = −𝑗𝜔𝐿Io

+e−𝛾𝑧 − 𝑅Io
+e−𝛾𝑧

which can be rearranged to give the characteristic impedance, defined by:

𝑍𝑜 =
Vo
+

Io
+ =

𝑗𝜔𝐿 + 𝑅

𝛾
=

𝑗𝜔𝐿 + 𝑅

𝑅𝐺 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 − 𝜔2𝐿𝐶
=

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶



Wave Impedance
The ratio of voltage to current at any point along a transmission line is fixed 
by the characteristics of the line.

This is the characteristic impedance of the line, given in terms of its per-length 
resistance, inductance, conductance, and capacitance.

𝑍𝑜 =
Vo
+

Io
+ =

𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶

Note that, if the line is lossless, this becomes:

𝑍𝑜 = 𝐿/𝐶

The characteristic impedance is the ratio of forward voltage to forward current.  The 
same derivation may be performed in terms of the backward voltage and backward 
current, to show:

𝑍𝑜 =
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶
=
𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑓𝑜𝑟𝑤𝑎𝑟𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡
= −

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑣𝑜𝑙𝑡𝑎𝑔𝑒

𝑏𝑎𝑐𝑘𝑤𝑎𝑟𝑑 𝑐𝑢𝑟𝑟𝑒𝑛𝑡

Note the negative sign of the backward terms

Note that the characteristic impedance of a lossless line is purely real.



Wave Properties
Let us pause here to summarize the wave properties we’ve encountered so far…

Characteristic Impedance: 𝑍𝑜 =
𝑅 + 𝑗𝜔𝐿

𝐺 + 𝑗𝜔𝐶

Complex Propagation Constant: 𝛾 = 𝑅𝐺 + 𝑗𝜔 𝐿𝐺 + 𝑅𝐶 − 𝜔2𝐿𝐶 = 𝛼 + 𝑗𝛽

Lossless Propagation Constant:

Attenuation Constant: 𝛼 = 𝑅𝑒{𝛾}

𝛽 = 𝐼𝑚 𝛾 =
2𝜋

λ

Angular Frequency: 𝜔 = 2𝜋𝑓



Wave Properties
Let us pause here to summarize the wave properties we’ve encountered so far…

Period: 𝑇 = 1/𝑓 = time in seconds between two peaks of a wave at a given location 
in space 𝑇

t

Wavelength: λ = distance in meters between two peaks of a wave at a given 
instant in time

λ

z



Wave Properties
Additionally, let us define group and phase velocity.

Phase velocity: 𝑣𝑝ℎ =
𝜔

𝛽

= velocity of the phase front of the wave

z

Group 
velocity:

this peak moves along z with velocity 𝑣𝑝ℎ

𝑣𝑔 =
𝛿𝜔

𝛿𝛽

= velocity of the envelope of the wave

(this definition holds for narrowband signals)

the envelope peak (dashed red) moves along z with velocity 𝑣𝑝ℎ

z



Wave Properties
Additionally, let us define group and phase velocity.

Phase velocity: 𝑣𝑝ℎ =
𝜔

𝛽

= velocity of the phase front of the wave

z
this peak moves along z with velocity 𝑣𝑝ℎ

Note that in a lossy medium, the phase velocity is a function of frequency.  This leads to 
dispersion, where a wave packet containing a range of frequencies (such as a square wave) input 
at one end will lose its shape over the length of the line, as the various frequencies travel at 
different rates.

𝑣𝑝ℎ =
1

𝐿𝐶

In a lossless medium (R=G=0), the frequency-dependence disappears, and we are left with:



Wave Properties
Additionally, let us define group and phase velocity.

Group velocity: 𝑣𝑔 =
𝛿𝜔

𝛿𝛽

= velocity of the envelope of the wave

the envelope peak (dashed red) moves along z with velocity 𝑣𝑝ℎ

(this definition holds for narrowband signals)

z

Note that if the wave consists of a single frequency, the group and phase velocities are equal.



Energy Transfer to Load
Let us look at what happens when a lossless transmission line is used to drive a 
load at location 𝑧 = ℓ

electrically long 
transmission line

z

On the line, the total voltage and total voltage consist of forward traveling and 
backward traveling components, which are related by:

At the load end, the ratio of total voltage to total current must conform to Ohm’s Law

Zo =
𝑉𝑜
+

𝐼𝑜
+ = −

𝑉𝑜
−

𝐼𝑜
−

Z𝐿 =
𝑉𝐿
𝐼𝐿

=
𝑉(ℓ)

𝐼(ℓ)
=
Vo
+e−j𝛽ℓ + Vo

−e+j𝛽ℓ

Io
+e−𝑗𝛽ℓ + Io

−e+j𝛽ℓ

𝑧 = ℓ



Energy Transfer to Load
Let us look at what happens when a lossless transmission line is used to drive a 
load at location 𝑧 = ℓ

These two relationships may be rearranged to show that:

𝑉𝑜
−

𝑉𝑜
+ =

𝑍𝐿e
−j𝛽ℓ − 𝑍𝑜e

−j𝛽ℓ

𝑍𝐿e
+𝑗𝛽ℓ + 𝑍𝑜e

+j𝛽ℓ

Zo =
𝑉𝑜
+

𝐼𝑜
+ = −

𝑉𝑜
−

𝐼𝑜
−Z𝐿 =

𝑉𝐿
𝐼𝐿

=
𝑉(ℓ)

𝐼(ℓ)
=
Vo
+e−j𝛽ℓ + Vo

−e+j𝛽ℓ

Io
+e−𝑗𝛽ℓ + Io

−e+j𝛽ℓ

And we can arbitrarily assign 𝑧 = ℓ = 0 as the zero location for the z-axis.  This 
leads to the following definition of the reflection coefficient:

Γ =
𝑉𝑜
−

𝑉𝑜
+ =

𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜



Reflection Coefficient
What does the reflection coefficient mean?

Γ =
𝑉𝑜
−

𝑉𝑜
+ =

𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

If a transmission line is driven with input voltage 𝑉𝑜
+, the signal will travel down 

the line to the load.  Once it reaches the load, there are two possible routes it may 
follow.  The signal may flow into the load, or it may reflect back toward the source.  
The reflection coefficient gives the ratio of the reflected voltage to the input 
voltage.

Consider three special cases.

1) 𝑍𝐿 = 𝑍𝑜 The is the perfect match scenario.  In this case, Γ = 0.  All the signal flows 
into the load.

2) 𝑍𝐿 → ∞ The is the open circuit scenario.  In this case, Γ = 1.  All the signal reflects 
back toward the source.

3) 𝑍𝐿 = 0 The is the short circuit scenario.  In this case, Γ = −1.  All the signal 
reflects back toward the source, with a phase shift of 180∘.



Reflection Coefficient

Γ =
𝑉𝑜
−

𝑉𝑜
+ =

𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

Note: On a lossless line, the characteristic impedance is positive and purely real.  If 
the load is passive (𝑅𝑒 𝑍𝐿 ≥ 0), then the magnitude of the reflection coefficient 
is between zero and one (0 ≤ Γ ≤ 1)

SWR =
1 + Γ

1 − Γ

We will define the standing wave ratio (SWR) on the line as:

and the return loss (RL) as:

RL = −20 log10 Γ

Note that Γ, SWR, and RL are all various expressions of reflection.

, dB



Reflections on a Transmission Line

Γ =
𝑉𝑜
−

𝑉𝑜
+ =

𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

Reflections on a transmission line are caused by impedance discontinuities

The reflection is nonzero whenever 𝑍𝐿 ≠ 𝑍𝑜.  In general, a greater difference 
between the line and load impedances (a greater mismatch), will result in a 
greater percentage of the signal being reflected back toward the source.  

Consider:



Input Impedance
Input impedance is the impedance (ratio of total voltage to total current) seen at 
the input to a system.

Consider the impedance seen at the input port of this system:

z

𝑧 = 0𝑧 = −ℓ

𝑉𝑖𝑛 = 𝑉 −ℓ = 𝑡𝑜𝑡𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 𝑠𝑒𝑒𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡

where the variables are defined by:

𝐼𝑖𝑛 = 𝐼 −ℓ = 𝑡𝑜𝑡𝑎𝑙 𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑠𝑒𝑒𝑛 𝑎𝑡 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡

𝑍𝑖𝑛 = 𝑍 −ℓ = 𝑖𝑛𝑝𝑢𝑡 𝑖𝑚𝑝𝑒𝑑𝑎𝑛𝑐𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑜𝑟𝑡 = ൗ
𝑉𝑖𝑛

𝐼𝑖𝑛



Input Impedance
Input impedance is the impedance (ratio of total voltage to total current) seen at 
the input to a system.

Note that we also have the following relationships:

so that:

𝑍𝑖𝑛 =
𝑍∘ 𝑒+𝛾ℓ + Γ𝑒−𝛾ℓ

𝑒+𝛾ℓ − Γ𝑒−𝛾ℓ
=
𝑍∘ 𝑒+𝛾ℓ +

𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

𝑒−𝛾ℓ

𝑒+𝛾ℓ −
𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

𝑒−𝛾ℓ

𝑉𝑖𝑛 = 𝑉 −ℓ = 𝑉∘
+𝑒𝛾ℓ + 𝑉∘

−𝑒−𝛾ℓ = 𝑉∘
+ 𝑒−𝛾ℓ + Γ𝑒+𝛾ℓ

𝐼𝑖𝑛 = 𝐼 −ℓ =
𝑉∘
+

𝑍∘
𝑒+𝛾ℓ −

𝑉∘
−

𝑍∘
𝑒−𝛾ℓ =

𝑉∘
+

𝑍∘
𝑒−𝛾ℓ − Γ𝑒+𝛾ℓ

Γ =
𝑉𝑜
−

𝑉𝑜
+ =

𝑍𝐿 − 𝑍𝑜
𝑍𝐿 + 𝑍𝑜

𝑍𝑖𝑛 = 𝑍∘
𝑍𝐿 + 𝑗𝑍∘tan 𝛽ℓ

𝑍∘ + 𝑗𝑍𝐿tan(𝛽ℓ)

which simplifies to:

This is the input impedance – the impedance seen at the input to a line with 
characteristic impedance 𝑍∘, if the line is terminated with load impedance 𝑍𝐿. 



The significance of the input impedance is that this circuit:

Input Impedance
Input impedance is the impedance (ratio of total voltage to total current) seen at 
the input to a system.

z

𝑧 = 0𝑧 = −ℓ

z

𝑧 = −ℓ
is equivalent to this circuit:

It should also be noted that, for a 
lossless transmission line, 

Γ𝐿 = |Γ𝑖𝑛|

Everything to the right of the 
input point may be replaced by 
𝑍𝑖𝑛 without affecting the left side 
of the circuit.  



Input Impedance
Input impedance is the impedance (ratio of total voltage to total current) seen at 
the input to a system.

𝑍𝑖𝑛 = 𝑍∘
𝑍𝐿 + 𝑗𝑍∘tan 𝛽ℓ

𝑍∘ + 𝑗𝑍𝐿tan(𝛽ℓ)Case 1: short circuit termination (𝒁𝑳 = 𝟎)

In this case, 

𝑍𝑖𝑛,𝑠𝑐 = 𝑗𝑍∘tan 𝛽ℓ = 𝑗𝑍∘tan ൗ2𝜋ℓ
𝜆

Notes:

1) When ℓ =
𝜆

4
, 𝛽ℓ =

𝜋

2
, and a short circuit                

(Z∘ = 0) looks like an open circuit (Z𝑖𝑛 = ∞)

2) The input impedance (Z𝑖𝑛) is inductive for

0 ≤ ℓ ≤
𝜆

4
, and capacitive for 

𝜆

4
≤ ℓ ≤

𝜆

4

3) The input impedance repeats every 
𝜆

2

Z𝑖𝑛 𝑧 = 𝑍𝑖𝑛 𝑧 +
𝜆

2

RecallLet us look at two special cases:



Input Impedance
Input impedance is the impedance (ratio of total voltage to total current) seen at 
the input to a system.

Let us look at two special cases:
𝑍𝑖𝑛 = 𝑍∘

𝑍𝐿 + 𝑗𝑍∘tan 𝛽ℓ

𝑍∘ + 𝑗𝑍𝐿tan(𝛽ℓ)Case 2: open circuit termination (𝒁𝑳 = ∞)

In this case, 

𝑍𝑖𝑛,𝑜𝑐 = −𝑗𝑍∘ cot 𝛽ℓ = −𝑗𝑍∘cot ൗ2𝜋ℓ
𝜆

Notes:

1) When ℓ =
𝜆

4
, 𝛽ℓ =

𝜋

2
, and an open circuit                

(Z∘ = ∞) looks like an open circuit (Z𝑖𝑛 = 0)

2) The input impedance (Z𝑖𝑛) is capacitive for

0 ≤ ℓ ≤
𝜆

4
, and inductive for 

𝜆

4
≤ ℓ ≤

𝜆

4

3) The input impedance repeats every 
𝜆

2

Z𝑖𝑛 𝑧 = 𝑍𝑖𝑛 𝑧 +
𝜆

2

Recall



Consider this circuit:  a load impedance of 𝑍𝐿 is being driven using a line with 
impedance 𝑍∘. 

Quarter-wave Transformers
Power transfer to the load may be improved through addition of a “matching 
network” between the line and the load.

In the most general case, 𝑍𝐿 ≠ 𝑍∘, and a portion of the 
signal reflects, according to: 

Γ𝑖𝑛 =
𝑍𝐿 − 𝑍∘
𝑍𝐿 + 𝑍∘

To reduce the reflection, an engineer may choose to add a matching network. 
One such network is a quarter-wave transformer, which adds an extra quarter-wave-
long section of transmission line before the load, like this: 

Here, if the added section has characteristic 

impedance 𝑍1 = 𝑍𝐿𝑍∘, then the input 

impedance at the port becomes 𝑍𝑖𝑛 = 𝑍∘, 
which eliminates the reflection (Γin = 0)!

***Note: for this to work, 𝑍𝐿 must be purely real.



Impedance Discontinuities
Reflections are caused by impedance discontinuities.

So far, we have discussed impedance discontinuities arising from a terminating 
load impedance that differs from the line impedance.

𝑍𝐿 ≠ 𝑍𝑜

Reflections will also occur at line impedance discontinuities, as shown in the 
circuit below, where the line impedance value changes from 𝑍1 to 𝑍0.

𝑍1 ≠ 𝑍𝑜



Impedance Discontinuities
Reflections are caused by impedance discontinuities.

If a wave is input from port 1, at the left (𝑉1
+), it will experience an instantaneous 

reflection at the discontinuity.  The reflected wave (𝑉1
−) will have a magnitude of 

Γ1𝑉1
+, where:

𝑉1
+

𝑉1
− = Γ1𝑉1

+

Γ1 =
𝑍∘ − 𝑍1
𝑍∘ + 𝑍1

A portion of the wave will also be transmitted into the 𝑍∘ line, with voltage 
magnitude calculated using the transmission coefficient 𝜏1, as 𝜏1𝑉1

+, where:

𝜏1 = 1 + Γ1

𝑉2
− = 𝜏1𝑉1

+

***Notice that the sum of the reflected and transmitted voltage magnitudes is not equal to the input 
voltage magnitude.  This is because it is power that is conserved, not voltage.

1 2

Γ1



Impedance Discontinuities
Reflections are caused by impedance discontinuities.

Similarly, if a wave is input from the right (𝑉2
+), it will experience an instantaneous 

reflection at the discontinuity.  The reflected wave (𝑉2
−) will have a magnitude of 

Γ2𝑉2
+, where:

𝑉2
− = Γ2𝑉2

+

Γ2 =
𝑍1 − 𝑍∘
𝑍1 + 𝑍∘

A portion of the wave will also be transmitted into the 𝑍1 line, with voltage 
magnitude calculated using the transmission coefficient 𝜏2, as 𝜏2𝑉2

+, where:

𝜏2 = 1 + Γ2

𝑉1
− = 𝜏2𝑉2

+

***Notice that the sum of the reflected and transmitted voltage magnitudes is not equal to the input 
voltage magnitude.  This is because it is power that is conserved, not voltage.

𝑉2
+

1 2

Γ2



Notational Convention
In naming these variables, we are using the following conventions:

In naming these variables, we are using the following conventions:

𝑉2
+

𝑉1
+

The superscript on the voltage terms indicates the direction that the voltage wave is traveling.   
+ indicates voltage entering the system (input voltage)
- indicates voltage exiting the system (output voltage)

𝑉2
−

𝑉2
+

The subscript on the input voltage terms indicates the entry location of the wave.   
1 indicates entry at port 1
2 indicates entry at port 2

Γ1

𝜏2

The subscript on the coefficients indicates their perspective.  
1 corresponds to a coefficient looking in from port 1
2 corresponds to a coefficient looking in from port 2

Note that perspective of a coefficient matters! Case in point:

Γ1 = −Γ2

𝑉1
−

𝑉2
−

The subscript on the output voltage terms indicates the exit location of the wave.   
1 indicates exit at port 1
2 indicates exit at port 2



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

Consider the following 2-port network:

2-port Network1 2

• A “port” is a location where energy (V, I) may enter and exit the system.
• An N-port network has N ports (in this case, two).
• Each port has its own characteristic impedance.
• The network may be driven at either of the two ports.
• Each driven signal may experience reflection (back out its entry port) and/or 

transmission to the other port.

Notes:

𝑍𝑜1 𝑍𝑜2



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

This is the complete set of signal path possibilities, including input at either port.

2-port Network1 2

Here, we must include an extra specifier in our nomenclature.  Note that the total 
voltage output at port 1 includes the reflected component of 𝑉1

+, which we have 
named 𝑉11

− , and also the transmitted component of 𝑉2
+, which we have named 𝑉12

− .  
Similar conventions were followed for port 2.  Thus,

𝑉22
−

𝑉12
−

𝑉2
+𝑉1

+

𝑉11
−

𝑉21
−

𝑉11
−

𝑉12
−

For variables having two subscripts, the first subscript indicates the exit 
port of the energy (in this case, port 1) and the second subscript 
indicates the entry port of the energy.

𝑍𝑜1 𝑍𝑜2



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

In order to analyze the system, we must be able to parse out how much of the 
output voltage is due to reflection, and how much is due to transmission.  To do 
this, we conduct N measurements.  For each measurement, we will drive at a 
single port, and match-terminate (load with its own characteristic impedance) all 
other ports.

2-port Network1 2𝑍𝑜1 𝑍𝑜2

𝑉1
+

𝑉11
−

𝑉21
−

𝑍𝑜2

Measurement 1:

2-port Network1 2𝑍𝑜1 𝑍𝑜2
𝑍𝑜1

Measurement 2:

𝑉22
−

𝑉12
−

𝑉2
+



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

Please note the following:

• For accurate measurements, the input at all non-driven ports must be zero.
• If the non-driven port were not match-terminated, the signal exiting that port would 

be partially reflected at the load, and this reflected signal would re-enter the system, 
appearing as an input at that port.

• Match-termination ensures that all the signal exiting the passive port is absorbed by 
the load, and none reflects back into the circuit.



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

For an N-port network, the S-parameters will be represented by an 𝑁 × 𝑁 matrix. 
As an example, a 2-port network will have the following S-parameters, or 
scattering-matrix:

𝑆 =
𝑆11 𝑆12
𝑆21 𝑆22

These parameters are interpreted as follows:

𝑆11 = reflection at port 1 = 𝑉11
−/𝑉1

+

𝑆12 = transmission to port 1 from port 2  = 𝑉12
−/𝑉2

+

𝑆21 = transmission to port 2 from port 1 = 𝑉21
− /𝑉1

+

𝑆22 = reflection at port 2 = 𝑉22
− /𝑉2

+



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

In general,

𝑆𝑖𝑗 =
𝑍∘𝑗

𝑍∘𝑖
ቤ

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑐𝑜𝑚𝑖𝑛𝑔 𝑜𝑢𝑡 𝑎𝑡 𝑝𝑜𝑟𝑡 𝑖

𝑉𝑜𝑙𝑡𝑎𝑔𝑒 𝑔𝑜𝑖𝑛𝑔 𝑖𝑛 𝑎𝑡 𝑝𝑜𝑟𝑡 𝑗
input at all other ports=0

Or,

𝑆𝑖𝑗 =
𝑍∘𝑗

𝑍∘𝑖
อ

𝑉𝑖
−

𝑉𝑗
+

Vk
+=0,k≠j

Note that, if the ports have the same characteristic impedance (𝑍∘𝑗 = 𝑍𝑜𝑖 for all 

values of i and j), this simplifies to:

𝑆𝑖𝑗 = อ
𝑉𝑖
−

𝑉𝑗
+

Vk
+=0,k≠j

Moving forward, we will assume that all systems have equal characteristic impedance at all ports 
(𝑍∘𝑗 = 𝑍𝑜𝑖 for all values of i and j).  In reality, this is usually (but not always) the case.  If you ever need to deal 

with mismatched port impedances, scale all voltages at each port by the characteristic impedance at that port.



S-parameters
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

Applying this to a 2-port network returns the following:
𝑆𝑖𝑗 = อ

𝑉𝑖
−

𝑉𝑗
+

Vk=0,k≠j

𝑆11 = ቤ
𝑉1
−

𝑉1
+

V2
+=0

𝑆21 = ቤ
𝑉2
−

𝑉1
+

V2
+=0

𝑆12 = ቤ
𝑉1
−

𝑉2
+

V1
+=0

𝑆22 = ቤ
𝑉2
−

𝑉2
+

V1
+=0

So that the total voltage coming out each port is given by:

𝑉1
− = 𝑉1

+𝑆11 + 𝑉2
+𝑆12

𝑉2
− = 𝑉1

+𝑆21 + 𝑉2
+𝑆22

or,
𝑉1
−

𝑉2
− =

𝑆11 𝑆12
𝑆21 𝑆22

𝑉1
+

𝑉2
+



S-parameters: Losslessness
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

Consider the following:

𝑆11 𝑆12
𝑆21 𝑆22

1 2

𝑉2
− = 𝑉1

+𝑆21 + 𝑉2
+𝑆22

𝑉2
+𝑉1

+

𝑉1
− = 𝑉1

+𝑆11 + 𝑉2
+𝑆12

𝑍𝑜 𝑍𝑜

If this network is lossless:

𝑉1
+ 2 = 𝑆21𝑉1

+ 2 + 𝑆11𝑉1
+ 2

𝑉2
+ 2 = 𝑆12𝑉2

+ 2 + 𝑆22𝑉2
+ 2

1 = 𝑆21
2 + 𝑆11

2

1 = 𝑆12
2 + 𝑆22

2

In a lossless system, the sum of all squared magnitudes of the elements in each column of 
the S-matrix is equal to one.

σ𝑖=1
𝑁 𝑆𝑖𝑗 = 1, for all values of j.



S-parameters: Reciprocity
S-parameters are a way of externally characterizing a system by analyzing the 
transmissions and reflections of voltage signals at its ports.

Consider the following:

𝑆11 𝑆12
𝑆21 𝑆22

1 2

𝑉2
− = 𝑉1

+𝑆21 + 𝑉2
+𝑆22

𝑉2
+𝑉1

+

𝑉1
− = 𝑉1

+𝑆11 + 𝑉2
+𝑆12

𝑍𝑜 𝑍𝑜

If this network is reciprocal:

𝑆 = 𝑆 𝑇 for a 2-port network, 𝑆 =
𝑆11 𝑆21
𝑆12 𝑆22

, 𝑆21= 𝑆12

In a reciprocal system, the S-matrix is symmetric about the main diagonal.



Return Loss and Insertion Loss
Let us revisit return loss, and introduce insertion loss…

We have previously defined return loss for a single-port network as:

RL = −20 log10 Γ , dB

For an N-port network, we will now define return loss in the context of S-parameters:

RL𝑛 = −20 log10 S𝑛𝑛 , dB

And we will also introduce insertion loss, having to do with the transmission between 
ports I and j

IL𝑖𝑗 = −20 log10 S𝑖𝑗 ,𝑖 ≠ 𝑗 , dB

As an example, for a 2-port network, we will have the following:

RL1 = −20 log10 S11

RL2 = −20 log10 S22

IL12 = −20 log10 S12

IL21 = −20 log10 S21


