Specific Heat of Materials

Thermal Capacitance in Heat Transfer Analysis – Lesson 2

Discussion of Governing Equation

The difference between steady-state heat transfer and transient heat transfer is the existence of the transient term with **density**, **specific heat** and the **time derivative of temperature** on the right side of the governing equation.

- Density and specific heat are materials properties.
- The time derivative of the temperature indicates that the governing equation solves a problem that changes with time.

$$k\nabla^2 T + q = \rho c \frac{\partial T}{\partial t}$$
Density Specific Heat

© 2020 ANSYS, Inc.

The density of a material is its mass per unit volume:

$$k\nabla^2 T + q = \rho c \frac{\partial T}{\partial t}$$

- For the same volume, materials with different densities have different masses.
- Mass should be differentiated from weight. Weight changes with the location of the object, mass doesn't.

© 2020 ANSYS, Inc.

Specific heat describes how much energy is required to raise the temperature by 1 unit for a unit mass of material.

- Since one temperature increment in Kelvin equals one temperature increment on the Celsius scale, the unit of specific heat can also be written as J/kg·°C

©2020 ANSYS, Inc.

A material with high specific heat can absorb a lot of heat before a temperature change. Less heat is needed to increase the temperature of a material with low specific heat.

• Water is a typical material with very high specific heat. Oceans store huge amounts of heat on the earth without changing much in temperature.

Material	Specific Heat (J/kg·K)
Water	4180
Sand	830

©2020 ANSYS, Inc.

Thermal Capacitance/Thermal Mass

While specific heat is a useful quantity, in engineering applications people often use the product of the specific heat and volume to describe a material's capacity to store heat energy. We call this thermal capacitance.

$$k\nabla^2 T + q = \rho c \frac{\partial T}{\partial t}$$

Thermal capacitance/thermal mass

$$Vc = mc$$

Thermal capacitance for unit volume

ρ

©2020 ANSYS, Inc.

Thermal Capacitance/Thermal Mass

Examples of thermal capacitance for a unit volume of various materials:

Material	$ ho_{(\mathrm{kg/m^3})}$		C J∕kg · K)		ρс (J/m ³ · K)	
Air		1.2		1000	1200	
Styrofoam		32		1100	35200	
Wood		350		1800	630000	
Plywood		400		1200	480000	
Polyethylene		900		2300	2070000	
Aluminum		2690		920	2474800	
Stainless steel		7500		450	3375000	
Mercury		13600		150	2040000	

An interesting observation. For many materials, if the density of a material is high, the specific heat of the material is comparatively low. Therefore, in engineering applications, you might find that the term *pc* does not differ drastically between different materials. This rule does not apply to all materials.

© 2020 ANSYS, Inc.

Specific Heat and Conductivity

What's the difference between conductivity and specific heat? They are two thermal properties of a material. In most cases, we need to consider them together to choose an appropriate material for product design.

• Specific heat: capability to store heat in time

 $\rho c \frac{\partial T}{\partial t}$

• Conductivity: capability to transfer heat in space

- Air and Styrofoam are bad at conduction, while they are good at storing heat energy. Therefore, they are ideal materials for insulators.
- Metals are good at heat conduction, so they are ideal materials for cookware.

/ Thermal Diffusivity

We have learned about the density, conductivity and specific heat of a material. Thermal diffusivity combines these three properties in one: It is the thermal conductivity divided by the density and the specific heat at constant pressure.

- Materials with high thermal diffusivity conduct heat rapidly.
- Thermal diffusivity describes how fast heat spreads in an area. Unit of thermal diffusivity is (m^2/s) .

Density	Specific Heat	Conductivity		
		k		
	Thermal Diffusivity	$\alpha = \frac{\pi}{\rho c}$		

Material	Thermal Diffusivity (m ² /s)				
Styrofoam	5.68182E-08				
Polyethylene	9.66184E-08				
Water	1.43541E-07				
Plywood	4.16667E-07				
Stainless steel	4.47407E-06	,			
Silicon	9.61538E-05				

Thermal Diffusivity

Q Which bench will you choose to sit on during a hot summer afternoon?

Based on life experiences, the wood bench seems to be the choice, buy why? Let's have a look at the thermal properties of the two benches.

