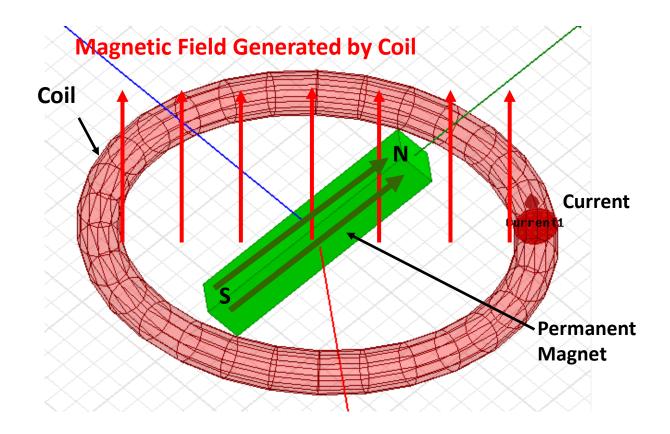
Ansys Maxwell Getting Started

Workshop 1.2: Magnetostatic 3D Analysis

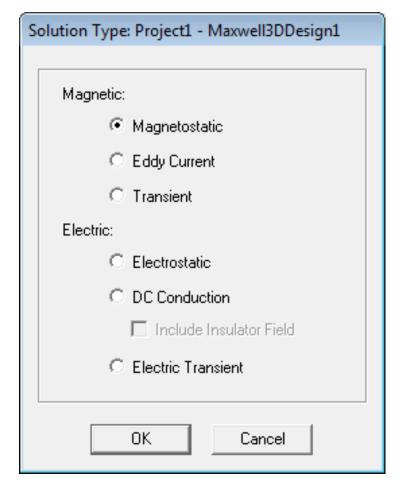

Release 2020R2

Overview

Background

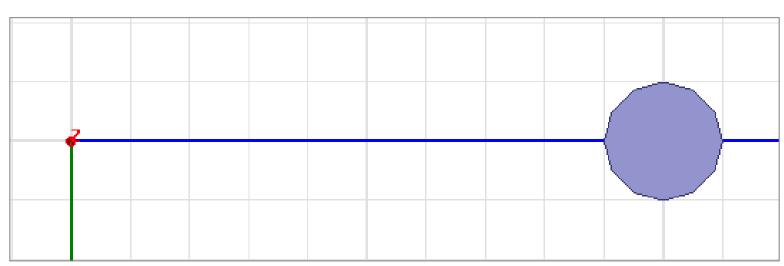
- This workshop assumes little or no prior experience of Maxwell. Basic principles will be demonstrated through the creation of a simple cylindrical symmetry.
- Force calculation in Magnetostatic Solver
 - This workshop will discuss how to set up a torque calculation in the 3D Magnetostatic Solver.
- Problem Description
 - As shown in the picture, the current in the coil generates a magnetic field pointing along Y-axis. The permanent magnet in the middle is magnetized along X-axis, hence a torque around Z-axis is generated

Model Setup

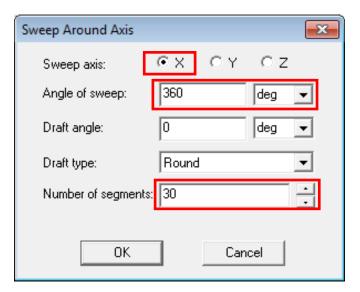

Insert Design

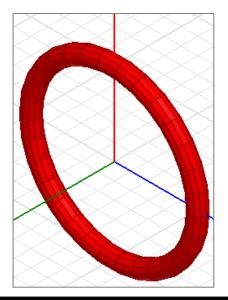
- Select the menu item *Project* - Insert Maxwell 3D Design, or click on the icon in drop down list Maxwell on

panel Desktop



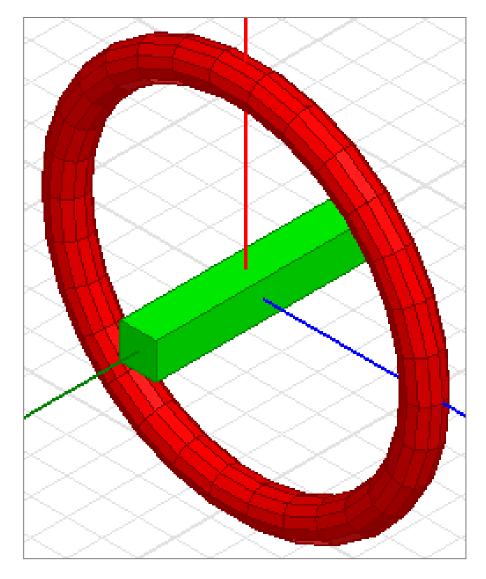
- Set Solution Type
 - Select the menu item *Maxwell 3D* → *Solution Type*
 - Choose *Magnetic* → *Magnetostatic*
 - Click the OK button
- Set Model Units
 - Select the menu item *Modeler* → *Units*
 - Select units: mm (millimeters) and press OK


Create Coil

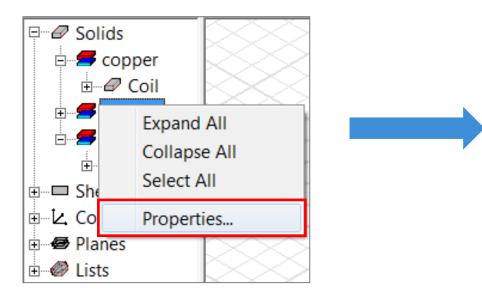

- Create Profile for Sweep
 - Select the menu item *Draw* → *Regular Polygon*
 - Using the coordinate entry fields, enter the center position
 - X: 0, Y: 5, Z: 0, Press the Enter key
 - Using the coordinate entry fields, enter the radius
 - dX: 0.5, dY: 0, dZ: 0, Press the Enter key
 - Number of Segments: 12
 - Press OK
 - Change the name of resulting object to Coil

Create Coil

- Sweep Profile
 - Select the object Coil from the history tree
 - Select the menu item *Draw* → *Sweep* → *Around Axis*
 - In Sweep Around Axis window
 - Sweep Axis: X
 - Angle of Sweep: 360 deg
 - Number of Segments: 30
 - Press OK
 - Change material of resulting object to Copper
 - Change its Color and Transparency if desired



Create Magnet


- Create permanent Magnet
 - Select the menu item *Draw* → *Box*
 - Using the coordinate entry fields, enter the box position X: -3, Y: -0.5, Z: -0.5, Press the Enter key
 - Using the coordinate entry fields, enter the opposite corner dX: 6, dY: 1, dZ: 1, Press the Enter key
 - Change the name of the resulting object to Magnet
 - Change material of the object to NdFe35
 - Change its color and transparency if desired

Check Magnetization Direction

- Check Properties of Material
 - Right click on NdFe35 from the history tree and select Properties
 - In Select Definition window, select View/Edit Materials
 - Ensure X Component is set to 1
 - Ensure Y and Z Component is set to 0

Material Name NdFe35				laterial Coord Cartesian
	roperties of the Material Name		Value	Units
Relative	Permeability	Type Simple	1.0997785406	
Bulk Con	ductivity	Simple	625000	siemens/m
Magnetic	: Coercivity	Vector		
- Magnit	ude	Vector Mag	-890000	A_per_mete
- × Com	oonent	Unit Vector	1	
- Y Com	oonent	Unit Vector	0	
- Z Com	oonent	Unit Vector	0	
	ion		Solid	

Note: It is important to check the direction of magnetization. By default Maxwell assigns magnetization direction as X axis of assigned co-ordinate system. Users can either modify the direction or create a coordinate system in required direction to alter the direction of magnetization

Create Coil Terminal

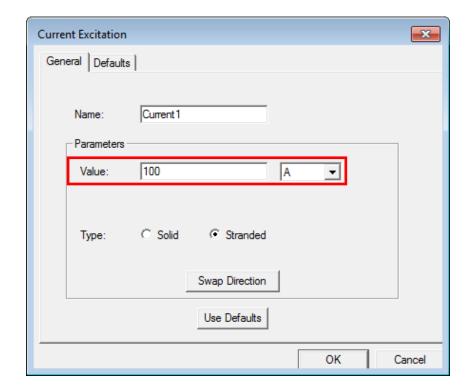
- Create Coil terminal
 - Select the object Coil from the history tree
 - Select the menu item *Modeler* → *Surface* → *Section*
 - Section Plane: XY
 - Press OK
 - Change the name of the resulting sheet to Terminal
- Separate Sheets
 - Select the sheet Terminal from the history tree
 - Select the menu item *Modeler* → *Boolean* → *Separate Bodies*
- Delete Extra Sheet
 - Select the sheet Terminal_Separate1 from the history tree
 - Select the menu item *Edit* → *Delete*

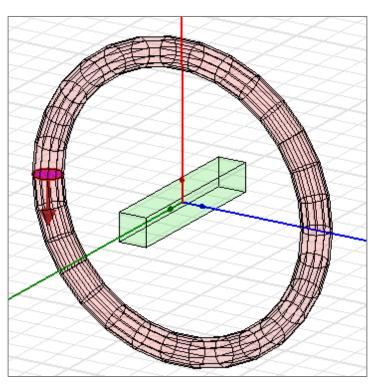
Assign Excitation

Assign Excitation

- Select the sheet Terminal from the history tree

- Select the menu item *Maxwell 3D* → *Excitations* → *Assign* → *Current*


- In Current Excitation window,


Name: Current1

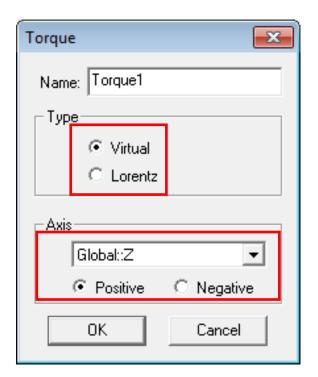
Value: 100 A

Type: Stranded

Press OK

Note: The current value assigned for static solvers is in Ampere-Turns

Assign Torque Parameter

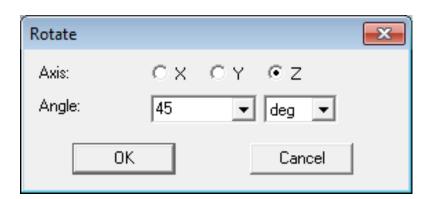

- Assign Torque Calculation
 - Select the object Magnet from the history tree
 - Select the menu item *Maxwell 3D* → *Parameters* → *Assign* → *Torque*
 - In Torque window,

• Name: Torque1

Type: Virtual

Axis: Global::Z

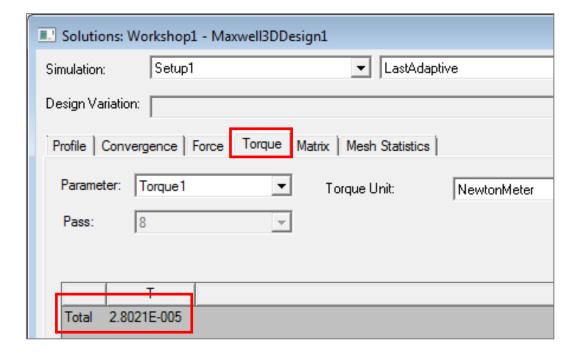
Press OK


Note: if Virtual is selected, the system uses virtual work principles to compute the torque on an object

Finalize Geometry

Rotate Coil

- Press Ctrl and select both objects Coil and Terminal from the history tree
- Select the menu item *Edit* → *Arrange* → *Rotate*
- In Rotate window,
 - Axis: Z
 - Angle: 45 deg
 - Press OK


Note: Coil rotation done after Terminal creation in order to use global planes for sectioning

- Create Simulation Region
 - Select the menu item *Draw* → *Region*
 - In Region window,

 - Padding Type: Percentage Offset
 - Value: 100
 - Press: OK

Analysis and Results

- Create an analysis setup:
 - Select the menu item *Maxwell 3D* → *Analysis Setup* → *Add Solution Setup*
 - Solution Setup Window:
 - Click the OK to accept default settings
- Start the solution process:
 - In the Project Manager window RMB on Setup1 → Analyze
- View the Solution Results:
 - Select the menu Maxwell 3D → Results → Solution Data
 - To view Torque values
 - Select the Torque tab

Saving the Project

- This completes the workshop
- Save the file with the name Workshop_1_2 in the working folder

End of Presentation

