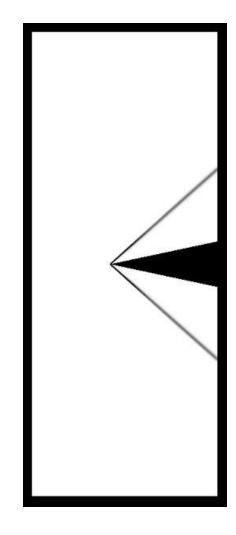
Oblique Shock Waves

Shock-Expansion Theory – Lesson 3

Oblique Shock Waves

- In the previous lesson we covered normal shocks, and now we will expand our discussion to oblique shock waves with wave fronts inclined at an angle to the upstream flow.
- Oblique shocks commonly occur when a supersonic flow is deflected by a concave corner and is forced to turn onto itself.
- A normal shock is a special case of an oblique shock which we will see in our further discussion.
- To analyze oblique shocks we can apply the governing physical laws to the flow passing through the shock and develop relations to describe property changes across the shock wave.
- We will make our considerations simpler by taking advantage of the normal shock results.



Oblique shocks generated at the tip of a wedge placed in supersonic flow (M=2)

Physical Model of an Oblique Shock Wave

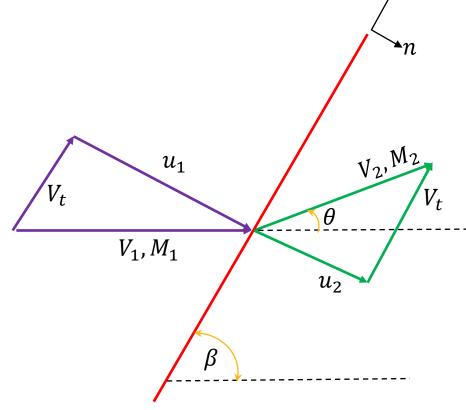
• Let's consider a shock wave oblique to the flow direction.

• The velocity upstream of an oblique shock, V_1 , can be represented as a superposition of the normal shock velocity, u_1 , and a velocity parallel to the shock front, V_t :

$$V_1 = \sqrt{u_1^2 + V_t^2}$$

$$\beta = \tan^{-1}(u_1/V_t)$$

- Since the normal velocity downstream of the shock, u_2 , is less than u_1 , the flow always turns towards the shock, and the angle of deflection θ is positive.
- The relations between upstream and downstream conditions can be easily defined from the normal shock relations since the superposition of a uniform velocity V_t does not affect static pressure or any other static parameters.
- Noting that the upstream normal velocity is given by $u_1/a_1 = M_1 \sin \beta$, relations for an oblique shock can be obtained simply by replacing u_1/a_1 with $M_1 \sin \beta$ in the normal shock expressions.



Oblique Shock Relations

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)M_1^2 \sin^2 \beta}{(\gamma - 1)M_1^2 \sin^2 \beta + 2}$$

$$\frac{p_2 - p_1}{p_1} = \frac{2\gamma (M_1^2 \sin^2 \beta - 1)}{\gamma + 1}$$

$$\frac{\rho_2}{\rho_1} = \frac{(\gamma + 1)M_1^2 \sin^2 \beta}{(\gamma - 1)M_1^2 \sin^2 \beta + 2} \qquad \boxed{\frac{p_2 - p_1}{p_1} = \frac{2\gamma (M_1^2 \sin^2 \beta - 1)}{\gamma + 1}} \boxed{\frac{T_2}{T_1} = \frac{a_2^2}{a_1^2} = 1 + \frac{2(\gamma - 1)}{(\gamma + 1)^2} \frac{(\gamma M_1^2 \sin^2 \beta + 1)}{M_1^2 \sin^2 \beta} (M_1^2 \sin^2 \beta - 1)}$$

$$\frac{s_2 - s_1}{R} = \ln \frac{p_{01}}{p_{02}} = \left[1 + \frac{2\gamma}{\gamma + 1} (M_1^2 \sin^2 \beta - 1)\right]^{1/(\gamma - 1)} \left[\frac{(\gamma + 1)M_1^2 \sin^2 \beta}{(\gamma - 1)M_1^2 \sin^2 \beta + 2}\right]^{-\gamma/(\gamma - 1)}$$

The ratios of static thermodynamic quantities depend only on the normal to the shock velocity component which must be supersonic upstream of the shock, $M_1 \sin \beta \ge 1.0$, which defines the minimum inclination angle. The maximum angle is the normal shock, $\beta = \pi/2$:

$$\sin^{-1}(1/M_1) \le \beta \le \pi/2$$

The Mach number downstream of the shock can be obtained by noting $u_2/a_2 = M_2 \sin(\beta - \theta)$:

$$M_2^2 \sin^2(\beta - \theta) = \frac{1 + \frac{\gamma - 1}{2} M_1^2 \sin^2 \beta}{\gamma M_1^2 \sin^2 \beta - \frac{\gamma - 1}{2}}$$

Relations Between Wave Angle eta and Deflection Angle heta

• Noting from the velocity triangles, $\tan\beta = u_1/V_t$ and $\tan(\beta - \theta) = u_2/V_t$, and utilizing the continuity equation and the density ratio relation from the previous slide,

$$\frac{\tan(\beta - \theta)}{\tan\beta} = \frac{u_2}{u_1} = \frac{\rho_1}{\rho_2} = \frac{(\gamma - 1)M_1^2 \sin^2\beta + 2}{(\gamma + 1)M_1^2 \sin^2\beta} \implies \tan\theta = 2\cot\beta \frac{M_1^2 \sin^2\beta - 1}{M_1^2 (\gamma + \cos 2\beta) + 2}$$

• This expression can be re-arranged by dividing the numerator and denominator of the left formula above by $1/2 M_1^2 \sin^2 \beta$:

$$M_1^2 \sin^2 \beta - 1 = \frac{\gamma + 1}{2} M_1^2 \frac{\sin \beta \sin \theta}{\cos(\beta - \theta)}$$

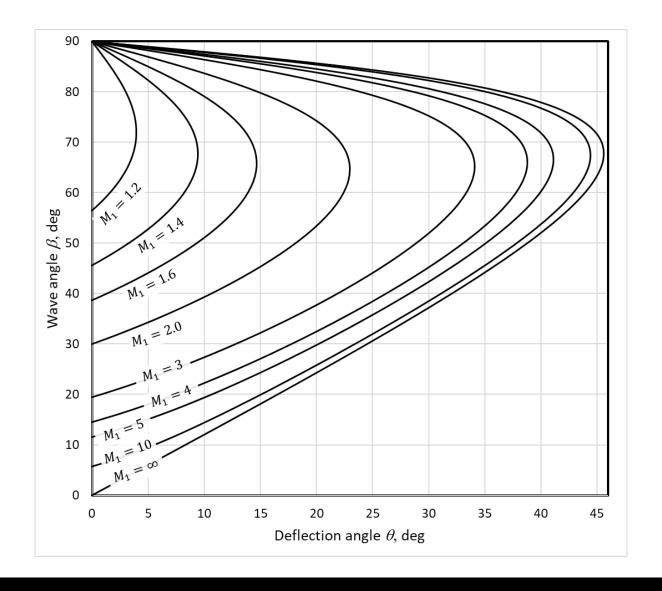
which can be approximated for small deflection angles as:

$$M_1^2 \sin^2 \beta - 1 \approx \left[\frac{\gamma + 1}{2} M_1^2 \tan \beta \right] \cdot \theta$$

Relations Between Wave Angle β and Deflection Angle θ (cont.)

- The plot on the next slide shows β - θ curves for different Mach numbers. Each curve has a maximum, θ_{max} , and yields two roots for β when $\theta < \theta_{max}$:
 - The larger value of β gives the strong shock solution. The Mach number behind a strong shock is subsonic.
 - The smaller value of β gives the weak shock solution, which more commonly occurs in nature than the strong shock. The Mach number behind a weak shock is supersonic.
 - A strong shock can be generated if the backpressure behind the shock is increased by an external mechanism.
 - M_2 is subsonic in the strong solution and supersonic in the weak solution.
 - The deflection angle θ is zero at $\beta = \pi/2$ (normal shock) and $\beta = \sin^{-1}(1/M_1)$ (Mach wave which we will discuss later on in this lesson).
 - For a fixed deflection angle, M_1 decreases from high to low supersonic values for weak shocks until it reaches a point at $\theta = \theta_{max}$ where weak solutions are no longer possible. For lower values of M_1 , there is not a solution for a straight oblique shock, and the shock becomes detached.

Relations Between Wave Angle β and Deflection Angle θ (cont.)

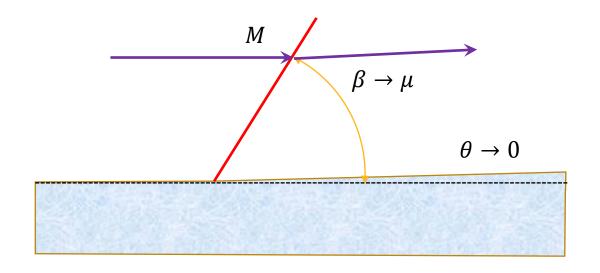


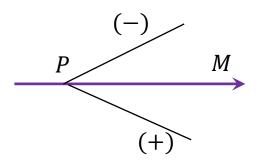
Mach Waves and Mach Lines

- Let's consider the limit as the deflection angle θ goes to zero.
- From the pressure ratio solution, it follows that the angle this wave makes with the surface is a function of Mach number only. This "wave" is also called a Mach wave and the angle μ is the Mach angle given by:

$$\mu = \sin^{-1}(1/M)$$

- The pressure jump also goes to zero, and, strictly speaking, this is not a wave, but simply a characteristic angle associated with the Mach number.
- The name Mach wave can be misleading as it is commonly used for weak but finite waves produced by small disturbances.
- At any point P in the flow field, there are two Mach lines, (+) and (-), intersecting a streamline at the angle μ in 2D. In 3D, Mach lines form a conical surface.





 The Mach lines are also called characteristics, as they trace the propagation of one-dimensional waves.

Weak Oblique Shocks

In the previous slide, we considered the zero-deflection angle limit. Now let's assume that heta is small but finite. The β - θ relation can then be simplified as:

$$M_1^2 \sin^2 \beta - 1 \approx \left[\frac{\gamma + 1}{2} M_1^2 \tan \beta \right] \cdot \theta$$

$$\tan \beta \approx \tan \mu = \frac{1}{\sqrt{M_1^2 - 1}}$$

$$M_1^2 \sin^2 \beta - 1 \approx \frac{\gamma + 1}{2} \frac{M_1^2}{\sqrt{M_1^2 - 1}} \theta$$
 $\left| \frac{p_2 - p_1}{p_1} \approx \frac{\gamma + 1}{2} \frac{\gamma M_1^2}{\sqrt{M_1^2 - 1}} \theta \right| \Rightarrow$

$$\frac{p_2 - p_1}{p_1} \approx \frac{\gamma + 1}{2} \frac{\gamma M_1^2}{\sqrt{M_1^2 - 1}} \theta$$

wave strength proportional to the deflection angle

- From the weak normal shock analysis, entropy is proportional to the 3rd power of shock strength, thus $\Delta s \sim \theta^3$.
- The deviation between the wave angle β and Mach angle μ , $\epsilon=\beta-\mu$, can be approximated under the assumption $\epsilon \ll \mu$ as:

$$\epsilon \approx \frac{\gamma + 1}{4} \frac{M_1^2}{M_1^2 - 1} \theta$$

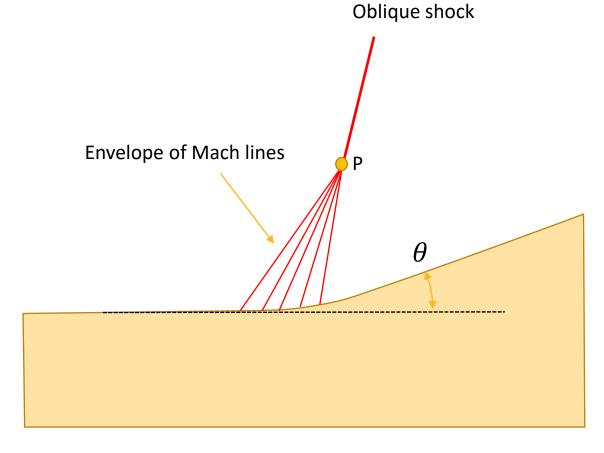
For a finite small deflection angle, the wave direction $\epsilon pprox rac{\gamma+1}{4} rac{M_1^2}{M^2-1} heta$ differs from the Mach direction by an amount on the order of magnitude of θ .

• Finally, the change of flow speed across a weak oblique shock is:

$$\frac{V_2}{V_1} \approx 1 - \frac{\theta}{\sqrt{M_1^2 - 1}}$$

Supersonic Compression by a Curved Wall

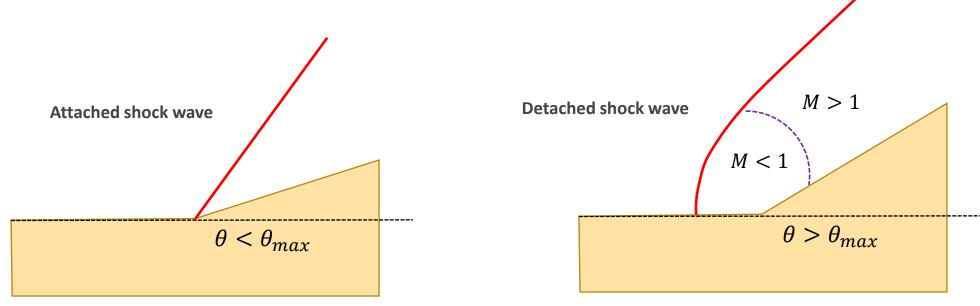
- Until now, we have considered a sharp concave corner geometry, which supports a simple weak solution oblique shock wave.
- What about smoothly curved concave walls?
- For this type of geometry, we see that a family of very weak compression waves (Mach waves) are formed.
- These Mach waves coalesce at point P and form an oblique shock wave consistent with the deflection angle θ .
- Note that the radius of curvature must remain fixed for the wall, although for real, 3D geometry, the surface may have a complex shape, in which case compression or expansion waves may form and interact in various ways.



Detached Shock Waves

- As can be seen from the β - θ chart, for a given upstream Mach number, there exists a maximum deflection angle (θ_{max}) that is possible for the flow to turn.
- What if we try to turn the flow more than this angle? The flow will instead create a detached curved shock wave (also called a bow shock) as shown in the illustration. There will be a region of subsonic flow near the corner which eventually accelerates to supersonic downstream.

• Note that θ_{max} increases with Mach number, meaning that a straight shock solution is possible for larger deflection angles at higher Mach numbers.

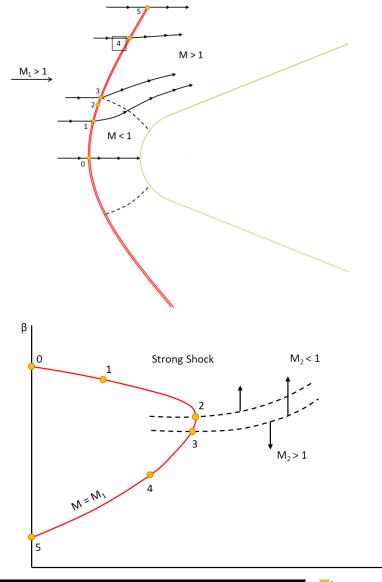


A General Case of Detached Shocks In Front of Blunt Bodies

 A supersonic flow over a blunt body is characterized by a strong curved bow shock generated in front of the body. This shock can be represented by a superposition, or a blend, of a normal shock, strong oblique shocks and weak oblique shocks.

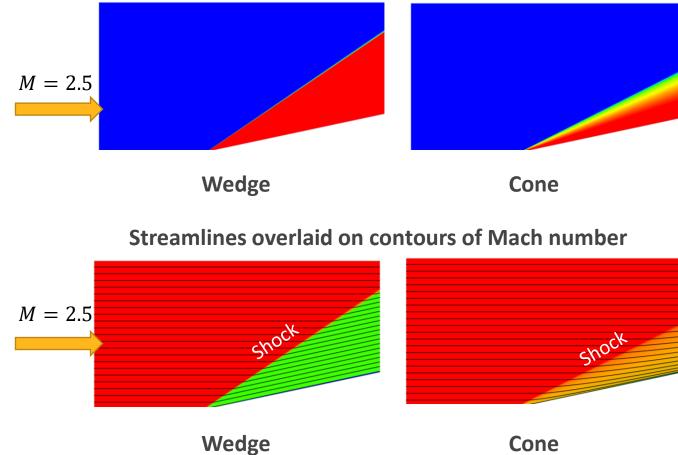
Point	Condition
0	normal shock, subsonic flow behind
1	strong oblique shock, subsonic flow behind the shock
2	divide between strong and weak solutions
3	sonic flow behind the shock
3 - 5	weak oblique shock, supersonic flow behind the shock

 A detached bow shock is complex and cannot be described analytically. Numerical techniques are required for solving supersonic flows over blunt bodies.



Supersonic Flow Over Wedges and Cones

- The foregoing analysis applies to 2D planar shock waves, and it can be directly applied to flow over two-dimensional wedges.
- A supersonic flow over a conical surface is, however, not as simple as that over a 2D wedge, since a uniform flow downstream of the shock is not possible as it does not satisfy the continuity equation.
- The conical flow problem can be solved using two observations:
 - There is limited upstream influence
 - Absence of characteristic length
- Under these assumptions, properties vary only with the angle, i. e., the conditions are constant along each ray from the cone vertex. Such flows are called conical.
- Unlike the 2D wedge flow, there is additional isentropic compression occurring up to the surface pressure and flow streamlines are curved behind the shock.



Contours of static pressure

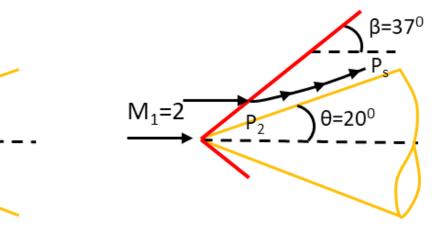
Supersonic Flow Over Wedges and Cones

 The solution is represented by an ordinary differential equation called the Taylor-Maccoll equation, requiring numerical solution:

$$\left[\frac{\gamma - 1}{2}\left[1 - V_r^2 - \left(\frac{dV_r}{d\omega}\right)^2\right]\left[2V_r + \cot\omega\frac{dV_r}{d\omega} + \frac{d^2V_r}{d\omega^2}\right] - \frac{dV_r}{d\omega}\left[V_r\frac{dV_r}{d\omega} + \frac{dV_r}{d\omega}\frac{d^2V_r}{d\omega^2}\right], = 0 \quad V_\omega = \frac{dV_r}{d\omega}$$

• This equation is solved for $V_r(\omega)$ by marching the solution from the initial condition at θ to the cone surface where $V_{\omega} = dV_r/d\omega = 0$. Isentropic relations are then used to determine flow variables along

each ray.



Wedge

Cone

Summary

- We examined oblique shock waves, their properties and relations in this lesson.
- We also discussed detached and bow shocks which can be thought of as generalized combinations of normal and oblique shocks.
- We also examined how the oblique shock theory can be applied to solve supersonic flows over wedges and corners.

Ansys