Oblique Shock Waves

Shock-Expansion Theory — Lesson 3




Oblique Shock Waves

* In the previous lesson we covered normal shocks, and now we will

expand our discussion to with wave fronts
inclined at an angle to the upstream flow.
* Oblique shocks commonly occur when a supersonic flow is
deflected by a concave corner and is forced to turn onto itself.
« A which we will |

see in our further discussion.

e To analyze oblique shocks we can apply the governing physical laws
to the flow passing through the shock and develop relations to
describe property changes across the shock wave.

* We will make our considerations simpler by taking advantage of the
normal shock results.
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Physical Model of an Oblique Shock Wave

* Let’s consider a shock wave oblique to the flow direction.

* The velocity upstream of an oblique shock, V;, can be represented as a
superposition of the normal shock velocity, 14, and a velocity parallel to the shock

front, V;: <
n
v, = /u% + V7 ‘ B = tan~t(uy /V,)

* Since the normal velocity downstream of the shock, u,, is
less than u4, the flow always turns towards the shock, and
the angle of deflection 6 is positive. Vi

* The relations between upstream and downstream conditions
can be easily defined from the normal shock relations since
the superposition of a uniform velocity V; does not affect
static pressure or any other static parameters.

* Noting that the upstream normal velocity is given by
, relations for an oblique shock can be
obtained simply by replacing with in the
normal shock expressions.




Oblique Shock Relations
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The ratios of static thermodynamic quantities depend only on the normal to the shock velocity
component which must be supersonic upstream of the shock, , Which defines the
minimum inclination angle. The maximum angle is the normal shock, :

sin"1(1/M) < B <m/2

The Mach number downstream of the shock can be obtained by noting

1+ %M%sinzﬁ
M2sin?(f — 0) =




Relations Between Wave Angle  and Deflection Angle 6

* Noting from the velocity triangles, and , and utilizing the
continuity equation and the density ratio relation from the previous slide,

M#sin?f — 1
MZ(y + cos2f) + 2

tan(B —6) u, p; (¥ —1)Misin’g +2
tanf  u, p, (r+ 1)M#sin?p

tan6 = 2 cotf

* This expression can be re- arranged by dividing the numerator and denominator of the left
formula above by

_ y+1 sin § sin 6
Misin*f —1 = ——M;
isin“p 2 1 cos(B — 0)

which can be approximated for small deflection angles as:

+1
M#sin?f — 1 = [yTMlz tanﬁ] -0
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Relations Between Wave Angle [/ and Deflection Angle 6 (cont.)

* The plot on the next slide shows -0 curves for different Mach numbers. Each curve
has a maximum, 0,,,,,., and yields two roots for f when 8 < 0,,,4+:

The larger value of S gives the . The Mach number behind a strong shock is
subsonic.
The smaller value of (8 gives the , Which more commonly occurs in nature than the

strong shock. The Mach number behind a weak shock is supersonic .

A strong shock can be generated if the backpressure behind the shock is increased by an external
mechanism.

is subsonic in the strong solution and supersonic in the weak solution.

The deflection angle ¢ is zero at (normal shock) and (Mach wave which we
will discuss later on in this lesson).

For a fixed deflection angle, decreases from high to low supersonic values for weak shocks until it
reaches a point at 8 = 6,,,,,, where weak solutions are no longer possible. For lower values of
there is not a solution for a straight oblique shock, and the shock becomes detached.

4
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Relations Between Wave Angle [ and Deflection Angle 6 (cont.)
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Mach Waves and Mach Lines

* Let’s consider the limit as the deflection angle 6 goes to
zero.

* From the pressure ratio solution, it follows that the
angle this wave makes with the surface is a function of
Mach number only. This “wave” is also called a

and the angle u is the given by:

pu=sin"1(1/M)

* The pressure jump also goes to zero, and, strictly
speaking, this is not a wave, but simply a characteristic
angle associated with the Mach number.

* The name Mach wave can be misleading as it is
commonly used for weak but finite waves produced by
small disturbances.

e At any point P in the flow field, there are two Mach
lines, (+) and (-), intersecting a streamline at the angle u
in 2D. In 3D, Mach lines form a conical surface.

6 -0

(-)

(+)

* The Mach lines are also called

, as

they trace the propagation of one-dimensional

waves.
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Weak Oblique Shocks

* In the previous slide, we considered the zero-deflection angle limit. Now let’s assume that 8 is small
but finite. The -0 relation can then be simplified as:

_ y+1 1
M{sin?f — 1~ |——M{t - 0 tanp = tanuy = ———
isin“f [ 5 i tanf B U 2 -1
M2sin?B — 1 ~ y+1 Ml2 p2—p1 Vv+1 VM1 wave strength proportional to
1 —1l= ~ )
2 M? -1 D1 2 M? — the deflection angle

* From the weak normal shock analysis, entropy is proportional to the 3rd power of shock strength, thus

* The deviation between the wave angle /7 and Mach angle /1, , can be approximated under the

assumption € < (i as: For a finite small deflection angle, the wave direction

6 ‘ differs from the Mach direction by an amount on the
order of magnitude of 0.

y+1 M1
4 M?2-1

€E=

V. 6
* Finally, the change of flow speed across a weak oblique shock is: 2 —
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Supersonic Compression by a Curved Wall

Obligue shock

* Until now, we have considered a sharp concave corner
geometry, which supports a simple weak solution
oblique shock wave.

« What about smoothly curved concave walls? Envelope of Mach lines

* For this type of geometry, we see that a family of very
weak compression waves (Mach waves) are formed. 0

* These Mach waves coalesce at point P and form an
oblique shock wave consistent with the deflection angle
6.

* Note that the radius of curvature must remain fixed for
the wall, although for real, 3D geometry, the surface may
have a complex shape, in which case compression or
expansion waves may form and interact in various ways.
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Detached Shock Waves

* As can be seen from the -0 chart, for a given upstream Mach number, there exists a maximum deflection angle
(Bmax) that is possible for the flow to turn.

* What if we try to turn the flow more than this angle? The flow will instead create a detached curved shock wave
(also called a bow shock) as shown in the illustration. There will be a region of subsonic flow near the corner
which eventually accelerates to supersonic downstream.

* Note that 6,,,,, increases with Mach number, meaning that a straight shock solution is possible for larger
deflection angles at higher Mach numbers.

Attached shock wave Detached shock wave

0 < Opmax
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A General Case of Detached Shocks In Front of Blunt Bodies

* A supersonic flow over a blunt body is characterized by a strong .
curved bow shock generated in front of the body. This shock can
be represented by a superposition, or a blend, of a normal
shock, strong oblique shocks and weak oblique shocks.

0 normal shock, subsonic flow behind
1 strong oblique shock, subsonic flow behind the
shock
2 divide between strong and weak solutions .
3 sonic flow behind the shock . . stong hou V<1
3.5 weak obligue shock, supersonic flow behind i \ {,/
theshock X %J

A detached bow shock is complex and cannot be described
analytically. Numerical techniques are required for solving W
supersonic flows over blunt bodies.
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Supersonic Flow Over Wedges and Cones

* The foregoing analysis applies to 2D planar shock

waves, and it can be directly applied to flow over Contours of static pressure
two-dimensional wedges.
e A supersonic flow over a conical surface is,
however, not as simple as that over a 2D wedge, M =25
since a uniform flow downstream of the shock is
not possible as it does not satisfy the continuity
equation.
* The conical flow problem can be solved using two Wedge Cone

observations:

- There is limited upstream influence Streamlines overlaid on contours of Mach number

- Absence of characteristic length

e Under these assumptions, properties vary only
with the angle, i. e., the conditions are constant
along each ray from the cone vertex. Such flows
are called conical.

M =25

* Unlike the 2D wedge flow, there is additional
isentropic compression occurring up to the

surface pressure and flow streamlines are curved Wedge Cone
behind the shock.
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Supersonic Flow Over Wedges and Cones

* The solution is represented by an ordinary differential equation called the )
requiring numerical solution:

2
y—1 dv. dv. d2v.] dv.[ dVv. dv.d?V, dv,
——|1-v2 == | |2V, + cot + —~ , =0V, =—
| 2 r <dw> [ r TN T dw? | do | T de | do dw? dw
* This equation is solved for by marching the solution from the initial condition at ¢ to the cone
surface where . Isentropic relations are then used to determine flow variables along

each ray.




Summary

* We examined oblique shock waves, their properties and relations in this lesson.

* We also discussed detached and bow shocks which can be thought of as generalized
combinations of normal and oblique shocks.

* We also examined how the oblique shock theory can be applied to solve supersonic
flows over wedges and corners.






