
Oblique Shock Waves

Shock-Expansion Theory – Lesson 3



Oblique Shock Waves

• In the previous lesson we covered normal shocks, and now we will 
expand our discussion to oblique shock waves with wave fronts 
inclined at an angle to the upstream flow.

• Oblique shocks commonly occur when a supersonic flow is 
deflected by a concave corner and is forced to turn onto itself.

• A normal shock is a special case of an oblique shock which we will 
see in our further discussion.

• To analyze oblique shocks we can apply the governing physical laws 
to the flow passing through the shock and develop relations to 
describe property changes across the shock wave.

• We will make our considerations simpler by taking advantage of the 
normal shock results.

Oblique shocks generated at the tip of a wedge placed in 
supersonic flow (M=2)



Physical Model of an Oblique Shock Wave
• Let’s consider a shock wave oblique to the flow direction.

• The velocity upstream of an oblique shock, 𝑉1, can be represented as a 
superposition of the normal shock velocity, 𝑢1, and a velocity parallel to the shock 
front, 𝑉𝑡:
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• Since the normal velocity downstream of the shock, 𝑢2, is 
less than 𝑢1, the flow always turns towards the shock, and 
the angle of deflection 𝜃 is positive.

• The relations between upstream and downstream conditions 
can be easily defined from the normal shock relations since 
the superposition of a uniform velocity 𝑉𝑡 does not affect 
static pressure or any other static parameters.

• Noting that the upstream normal velocity is given by 
Τ𝑢1 𝑎1 = 𝑀1 sin𝛽 , relations for an oblique shock can be 

obtained simply by replacing Τ𝑢1 𝑎1with 𝑀1 sin𝛽 in the 
normal shock expressions.



Oblique Shock Relations

• The ratios of static thermodynamic quantities depend only on the normal to the shock velocity 
component which must be supersonic upstream of the shock, 𝑀1 sin𝛽 ≥ 1.0, which defines the 
minimum inclination angle. The maximum angle is the normal shock, 𝛽 = 𝜋/2:
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• The Mach number downstream of the shock can be obtained by noting Τ𝑢2 𝑎2 = 𝑀2 sin(𝛽 − 𝜃):
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Relations Between Wave Angle 𝛽 and Deflection Angle 𝜃

• Noting from the velocity triangles, tan𝛽 = Τ𝑢1 𝑉𝑡 and tan(𝛽 − 𝜃) = Τ𝑢2 𝑉𝑡, and utilizing the 
continuity equation and the density ratio relation from the  previous slide,  
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• This expression can be re-arranged by dividing the numerator and denominator of the left 
formula above by Τ1 2𝑀1

2sin2𝛽 :
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Relations Between Wave Angle 𝛽 and Deflection Angle 𝜃 (cont.)

• The plot on the next slide shows 𝛽-𝜃 curves for different Mach numbers. Each curve 
has a maximum, 𝜃𝑚𝑎𝑥, and yields two roots for 𝛽 when 𝜃 < 𝜃𝑚𝑎𝑥: 
‐ The larger value of 𝛽 gives the strong shock solution. The Mach number behind a strong shock is 

subsonic.

‐ The smaller value of 𝛽 gives the weak shock solution, which more commonly occurs in nature than the 
strong shock. The Mach number behind a weak shock is supersonic .

‐ A strong shock can be generated if the backpressure behind the shock is increased by an external 
mechanism.

‐ 𝑀2 is subsonic in the strong solution and supersonic in the weak solution.

‐ The deflection angle 𝜃 is zero at 𝛽 = 𝜋/2 (normal shock) and 𝛽 = sin−1( Τ1 𝑀1) (Mach wave which we 
will discuss later on in this lesson).

‐ For a fixed deflection angle, 𝑀1 decreases from high to low supersonic values for weak shocks until it 
reaches a point at 𝜃 = 𝜃𝑚𝑎𝑥 where weak solutions are no longer possible. For lower values of 𝑀1, 
there is not a solution for a straight oblique shock, and the shock becomes detached.



Relations Between Wave Angle 𝛽 and Deflection Angle 𝜃 (cont. )



Mach Waves and Mach Lines
• Let’s consider the limit as the deflection angle 𝜃 goes to 

zero.

• From the pressure ratio solution, it follows that the 
angle this wave makes with the surface is a function of 
Mach number only.  This “wave” is also called a Mach 
wave and the angle 𝜇 is the Mach angle given by:

• The pressure jump also goes to zero, and, strictly 
speaking, this is not a wave, but simply a characteristic 
angle associated with the Mach number.

• The name Mach wave can be misleading as it is 
commonly used for weak but finite waves produced by 
small disturbances.

• At any point P in the flow field, there are two Mach 
lines, (+) and (-), intersecting a streamline at the angle 𝜇
in 2D. In 3D, Mach lines form a conical surface. 

𝜃 → 0

𝛽 → 𝜇

𝜇 = sin−1 1/𝑀

• The Mach lines are also called characteristics, as 
they trace the propagation of one-dimensional 
waves.
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Weak Oblique Shocks
• In the previous slide, we considered the zero-deflection angle limit. Now let’s assume that 𝜃 is small 

but finite. The 𝛽-𝜃 relation can then be simplified as:
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• From the weak normal shock analysis, entropy is proportional to the 3rd power of shock strength, thus 
Δ𝑠~𝜃3.

• The deviation between the wave angle 𝛽 and Mach angle 𝜇 , 𝜖 = 𝛽 − 𝜇, can be approximated under the 
assumption 𝜖 ≪ 𝜇 as: 
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⟹ wave strength proportional to 
the deflection angle
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For a finite small deflection angle, the wave direction 
differs from the Mach direction by an amount on the 
order of magnitude of 𝜃. 

• Finally, the change of flow speed across a weak oblique shock is:
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Supersonic Compression by a Curved Wall

• Until now, we have considered a sharp concave corner 
geometry, which supports a simple weak solution 
oblique shock wave.

• What about smoothly curved concave walls?

• For this type of geometry, we see that a family of very 
weak compression waves (Mach waves) are formed. 

• These Mach waves coalesce at point P and form an 
oblique shock wave consistent with the deflection angle 
𝜃.

• Note that the radius of curvature must remain fixed for 
the wall, although for real, 3D geometry, the surface may 
have a complex shape, in which case compression or 
expansion waves may form and interact in various ways.  

𝜃

P

Oblique shock

Envelope of Mach lines



Detached Shock Waves
• As can be seen from the 𝛽-𝜃 chart, for a given upstream Mach number, there exists a maximum deflection angle 

(𝜃𝑚𝑎𝑥) that is possible for the flow to turn.

• What if we try to turn the flow more than this angle?  The flow will instead create a detached curved shock wave 
(also called a bow shock) as shown in the illustration.  There will be a region of subsonic flow near the corner 
which eventually accelerates to supersonic downstream.

• Note that 𝜃𝑚𝑎𝑥 increases with Mach number, meaning that a straight shock solution is possible for larger 
deflection angles at higher Mach numbers.

𝜃 < 𝜃𝑚𝑎𝑥

Attached shock wave

𝜃 > 𝜃𝑚𝑎𝑥

Detached shock wave

𝑀 < 1

𝑀 > 1



A General Case of Detached Shocks In Front of Blunt Bodies
• A supersonic flow over a blunt body is characterized by a strong 

curved bow shock generated in front of the body. This shock can 
be represented by a superposition, or a blend,  of a normal 
shock, strong oblique shocks and weak oblique shocks. 

Point Condition

0 normal shock, subsonic flow behind

1
strong oblique shock, subsonic flow behind the 
shock

2 divide between strong and weak solutions

3 sonic flow behind the shock

3 - 5
weak oblique shock, supersonic flow behind 
the shock

• A detached bow shock is complex and cannot be described 
analytically. Numerical techniques are required for solving 
supersonic flows over blunt bodies.



Supersonic Flow Over Wedges and Cones 
• The foregoing analysis applies to 2D planar shock 

waves, and it can be directly applied to flow over 
two-dimensional wedges.

• A supersonic flow over a conical surface is, 
however, not as simple as that over a 2D wedge, 
since a uniform flow downstream of the shock is 
not possible as it does not satisfy the continuity 
equation.

• The conical flow problem can be solved using two 
observations:
‐ There is limited upstream influence
‐ Absence of characteristic length

• Under these assumptions, properties vary only 
with the angle , i. e., the conditions are constant 
along each ray from the cone vertex. Such flows 
are called conical. 

• Unlike the 2D wedge flow, there is additional 
isentropic compression occurring up to the 
surface pressure and flow streamlines are curved 
behind the shock.

Wedge Cone

𝑀 = 2.5

𝑀 = 2.5

Streamlines overlaid on contours of Mach number 

Contours of static pressure

Wedge Cone



Supersonic Flow Over Wedges and Cones

• The solution is represented by an ordinary differential equation called the Taylor-Maccoll equation, 
requiring numerical solution:

• This equation is solved for 𝑉𝑟(𝜔) by marching the solution from the initial condition at 𝜃 to the cone 
surface where 𝑉𝜔 = Τ𝑑𝑉𝑟 𝑑𝜔 = 0. Isentropic relations are then used to determine flow variables along 
each ray.
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Summary

• We examined oblique shock waves, their properties and relations in this lesson.

• We also discussed detached and bow shocks which can be thought of as generalized 
combinations of normal and oblique shocks.

• We also examined how the oblique shock theory can be applied to solve supersonic 
flows over wedges and corners.




