
Quasi 1D Flows

Internal Flows – Lesson 3

Variable Area Flows



Intro

• In this lesson we will analyze quasi one-dimensional flows.

• Unlike a truly one-dimensional flow, the area of the passage 
varies in such flows. However, the variation 𝐴 = 𝐴(𝑥), is 
gradual And therefore it is sufficiently accurate to neglect 
the 𝑦 and 𝑧 variations, and to assume that the flow 
properties are functions of 𝑥 only. 

• In such flows, it is the area change that causes the 
properties to vary along the 𝑥 −direction. 

• A wide range of engineering applications such as wind 
tunnels, rocket engines, etc., can be  analyzed with a fair 
degree of accuracy using the methods discussed in this 
lesson. 
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Basics of 1D and Quasi 1D Flows

• The flow is considered compressible and has attained 
steady-state.

• The working fluid is assumed to be an ideal gas with 
known thermodynamic properties.

• Property variations are assumed to be isentropic (except 
across shock waves).

• Velocity and thermal property profiles are uniform 
across the passage.

• No separated or reversed flow,

• No heat transfer or work input to the fluid.

• The duct cross-sectional area:
• Is constant for 1D flows 

• Is a function of 𝑥 for quasi 1D flows

1-D Flow

Quasi 1-D Flow

𝐴 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝑝 = 𝑝 𝑥 , 𝜌 = 𝜌 𝑥 , 𝑇 = 𝑇 𝑥 , 𝑢 = 𝑢(𝑥)

𝐴 = 𝐴 𝑥

𝑝 = 𝑝 𝑥 , 𝜌 = 𝜌 𝑥 , 𝑇 = 𝑇 𝑥 , 𝑢 = 𝑢(𝑥)



Governing Equations for 1D Flow

ሶ𝑚 = 𝜌𝐴𝑉 = constant 𝑑𝑝 + 𝜌𝑉𝑑𝑉 = 0 ℎ0 = ℎ + Τ1 2𝑉2 𝑠0 = 𝑠 = constant
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Mass flow rate

• The quasi 1D continuity equation and the isentropic equations can be 
manipulated to give the following equation for the mass flow rate:

• This form shows that the mass flow rate is proportional to the fluid 
total pressure and the duct area, while is inversely proportional to the 
total temperature of the fluid. 

• Typically, the inlet conditions for a quasi 1D model are set assuming 
that the fluid originates from a tank at the stagnation (zero velocity) 
pressure and temperature.  

• The fluid is assumed to accelerate isentropically to the inlet of the 
passage, and we can define the inlet condition as known stagnation 
(total) flow properties ( 𝑝0, 𝑇0, 𝜌0 etc.). 
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Area – Velocity Relation

• Governing equations in differential form:

• Using the continuity equation we can get: 

• For an isentropic flow, any change in pressure 𝑑𝑝 is 
accompanied by a corresponding isentropic change in 
density 𝑑𝜌:

• Combining these equations and manipulating them, we get 
the Area – Velocity Relation:

𝑑 𝜌𝑢𝐴 = 0 𝑑𝑝 = −𝜌𝑢𝑑𝑢 𝑑ℎ + 𝑢𝑑𝑢 = 0
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• Let’s consider a converging nozzle from the energy equation:

• The passage mass flux (𝐺) can then be defined as: 

• Let’s denote the minimum area of the duct as the throat.

• For a given mass flow rate, the maximum mass flux must occur at the throat, since it is the smallest 
section of a duct.

Critical State in Compressible Flow

• As the gas accelerates, its velocity (and Mach number) increases, while the static pressure and 
temperature decrease. When the fluid velocity reaches Mach number = 1, an important limiting 
effect is imposed on the passage mass flow rate.  

‐ This flow state is the critical state and is denoted with the superscript * (e.g. 𝑝∗, 𝑇∗, 𝑉∗, 𝜌∗ etc.).  

‐ For our 1D passage we denote the area at which sonic conditions are achieved as 𝐴∗.
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Choking

• We denote the area and flow properties there with a subscript 𝑡.

• We can now write:

• From the 1D momentum equation:

• Under the assumption of isentropic flow, combining the above yields:

This shows that when the throat is small enough so that the velocity becomes equal to the speed of 
sound (or Mach number = 1), then the throat is the point of maximum mass flux. This physical effect is 
called choking, as it represents the maximum mass flow rate which can be achieved in a converging 
passage from a given stagnation condition.
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Choking and Flow Measurement

• Since throat conditions are at sonic velocity, they are also critical conditions and can be denoted by the * superscript 
(e. g. 𝐴𝑡 = 𝐴∗, 𝑇𝑡 = 𝑇∗, 𝑝𝑡 = 𝑝∗, etc.).

• The critical (choking) mass flow rate can be calculated substituting M=  1 in the relation presented earlier:
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• This equation provides the basis for flow measurement using choked converging 
passage nozzles.

‐ The choked mass flow equation can be used to determine the mass flow rate ሶ𝑚∗ from the 
upstream total pressure and temperature, the nozzle throat area 𝐴∗ and known gas 
thermodynamic properties (𝛾, 𝑅). 

‐ The total pressure and temperature can be measured using pitot-static tubes and 
thermocouple probes.

‐ The downstream pressure ratio 𝑝2/𝑝01should be less than the choking threshold (for example, 
0.528 for air).
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Critical Area Ratio and 1D Flow Solution

• Using the continuity equation, we can develop an equation for the passage area to critical (throat) area ratio :

• Notice that as 𝑀 → 1, 𝐴/𝐴∗ → 1 – that is, the passage area approaches the critical (throat) area. We can now 
formalize the 1D flow calculation procedure:
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Specify flow conditions at the inlet 
(stagnation properties and inlet 

Mach number).  
Passage geometry is known, 𝐴(𝑥).  

At the inlet Mach number, calculate 
the area ratio 𝐴(0)/𝐴∗ Since 
𝐴(𝑥) is known, calculate 𝐴∗

For any downstream station 
calculate 𝐴(𝑥)/𝐴∗ and use the area 
ratio equation to solve for the Mach 
number at the station.  (This can be done 

numerically, or one can consult tables.)

Knowing the Mach number, use 
the isentropic relations to obtain 

all flow properties.

This can be easily set up in a spreadsheet or computer 
program, thus avoiding the use of tables or charts.



Quasi 1D Flow Solution

• Note that 𝐴∗ is calculated based on the inlet conditions. However, in our actual passage geometry, 
the physical minimum area may be larger than 𝐴∗. If this is the case, then the flow will not choke at 
the throat.

• It is also possible that the minimum area is smaller than 𝐴∗. In this case, the prescribed inlet Mach 
number is not possible! In fact, for the prescribed stagnation pressure and temperature, the inlet 
Mach number will be lower and the physical throat in the passage will be choked. 

• Let's analyze this issue further by looking at the variation in Mach number with passage area. Using 
the quasi 1D governing equations and isentropic relations, we can develop the following relation:

• These equations lead to four limiting cases analyzed in the next slides.
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Converging Passage

• Subsonic Inflow

𝑀1 < 1, 𝐾 < 0, 𝑑𝐴 < 0

𝑑𝑀 > 0, 𝑀2 > 𝑀1 → Mach increases

• Supersonic Inflow

𝑀1 > 1, 𝐾 > 0, 𝑑𝐴 < 0

𝑑𝑀 < 0, 𝑀2 < 𝑀1 → Mach decreases

• Sonic Inflow, Supersonic Outflow

𝑀1 = 1, 𝑀2 > 1, 𝐾 > 0, 𝑑𝐴 < 0

𝑑𝑀 < 0, 𝑀2 < 𝑀1 → Impossible!

• Sonic Inflow, Subsonic Outflow

𝑀1 = 1, 𝑀2 < 1 , 𝐾 < 0, 𝑑𝐴 < 0

𝑑𝑀 > 0, 𝑀2 > 𝑀1 → Impossible!

𝑀2

𝑑𝐴 < 0

𝑀1 Flow

OutflowInflow

A converging passage is a nozzle for subsonic inflow 
and a diffuser for supersonic inflow

A sonic flow cannot enter a converging passage!

(up to 1)

(down to 1)



Diverging Passage

• Subsonic Inflow

𝑀1 < 1, 𝐾 < 0, 𝑑𝐴 > 0

𝑑𝑀 < 0, 𝑀2 < 𝑀1 → Mach decreases

• Supersonic Inflow

𝑀1 > 1, 𝐾 > 0, 𝑑𝐴 > 0

𝑑𝑀 > 0, 𝑀2 > 𝑀1 → Mach increases

• Sonic Inflow, Supersonic Outflow

𝑀1 = 1, 𝑀2 > 1, 𝐾 > 0, 𝑑𝐴 > 0

𝑑𝑀 > 0, 𝑀2 > 𝑀1 → Mach increases

• Sonic Inflow, Subsonic Outflow

𝑀1 = 1, 𝑀2 < 1, 𝐾 < 0, 𝑑𝐴 > 0

𝑑𝑀 < 0, 𝑀2 < 𝑀1 → Mach decreases

A diverging passage is a diffuser for subsonic inflow 
and a nozzle for supersonic inflow

A sonic flow can enter a diverging passage!
Note that the outflow may be subsonic or supersonic.
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Summary

• In this lesson we learned how to analyze quasi 1D compressible flow problems 
having variable area.

• The concepts of choking and critical flow properties were introduced.

• We also saw that there are physical limitations on the type of flow that is 
permissible in a converging or diverging passage.




