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Intro

• In this lesson we will discuss the method of characteristics for solving the governing equations of supersonic 
steady inviscid and irrotational flows, and illustrate an application of this method in a design of a divergent 
section of a supersonic nozzle.

• Combining the Continuity equation and Euler's equation, under the assumption of two-dimensional irrotational 
flow, we can derive the velocity potential equation:

• In a supersonic flow, this equation is of hyperbolic type and can be solved by the method of characteristics.

• It is not our goal here to go over the entire mathematical theory of hyperbolic equations. Instead, we will simply 
refer to PDE textbooks for the main results needed for this lesson.
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Main Postulates

• A PDE is hyperbolic if the coefficients of its highest-order derivatives satisfy a certain relation. For the velocity 
potential equation, this relation is: 

• A hyperbolic equation is characterized by the existence of certain directions (or lines) in the 𝑥 − 𝑦 plane called 
characteristics. For the velocity potential equation, characteristics are the Mach lines.

• The normal derivatives of the velocity components (2nd derivatives of the velocity potential) are indeterminate 
on a characteristic and can even be discontinuous in some cases, but the velocity itself (or 1st  derivatives of the 
velocity potential) is continuous.

• Since the normal velocity derivative is allowed to be discontinuous on a characteristic, different flows can be 
patched together at characteristic lines.

• On characteristics, the velocity potential satisfies a certain relation called the compatibility equation.
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Method of Characteristics

• Let’s go back to the 2D velocity potential equation. 

• Since the velocity potential and its derivatives are functions of 𝑥 and 𝑦, we have: 

• As these equations represent three equations with three unknowns, using Cramer’s rule we get: 
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Characteristic Lines

• If the denominator 𝐷 is chosen such that 𝐷 = 0, then the numerator N must also be zero (𝑁 = 0) , as we know 

that 
𝜕2𝜙

𝜕𝑥𝜕𝑦
has a specific defined value at every point in the flow. 

• Thus, we can say that there is some direction at every point (𝐴) along which 
𝜕2𝜙

𝜕𝑥𝜕𝑦
is indeterminate which is the 

characteristic line. The precise direction of these lines can be calculated as follows:

• Consider the point 𝐴 in the flow field and set the denominator 𝐷 to zero. Expanding the determinant 𝐷 and 
setting it to zero, we get: 
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Characteristic Lines (cont.)

• Since 𝑢 = 𝑉𝑐𝑜𝑠 𝜃 and 𝑣 = 𝑉𝑠𝑖𝑛 𝜃, and the local Mach angle 𝜇 is given by 𝜇 = sin−1 1/𝑀, the slope becomes: 

• After some algebraic and trigonometric manipulation, we get:

• This equation states that the two characteristic lines running through the point 𝐴 have slopes equal to tan(𝜃 − 𝜇)
shown by 𝐶− and tan(𝜃 + 𝜇) depicted by 𝐶+. 

• The characteristic lines through the point 𝐴 are simply the left and right running Mach waves through the point, i.e., 
the characteristic lines are Mach lines.  

• Note that the characteristic lines are curved in space because the local Mach angle depends on the local Mach 
number which is a function of both 𝑥 and 𝑦. Moreover the local streamline direction 𝜃 also varies throughout the 
flow. 
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Compatibility Equations

• Along the characteristic lines, the governing partial differential equation describing the flow reduce to ordinary 
differential equations known as compatibility equations. 

• These can be found by setting the numerator determinant to zero, 𝑁 = 0, giving: 

• Substituting here the slope of the characteristic lines, 𝑢 = 𝑉cos𝜃 and  𝑣 = 𝑉sin𝜃 and after some algebraic 
manipulations we get the following ODEs: 
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Compatibility Equations (cont.)

• These equations can be integrated to obtain a result in terms of the Prandtl-Meyer function as shown:

Here 𝐾− and 𝐾+ are different constants along different 𝐶− and 𝐶+ characteristics. 

• The above compatibility equations are now reduced to algebraic equations. In general inviscid supersonic steady 
flow, the compatibility equations are ODEs. 

• In the case of a 2D irrotational flow they further reduce to algebraic equations. 

• The equations can be combined to obtain simple expressions to calculate 𝜃 and 𝜈.

• Next, we discuss how we can use these results to calculate the supersonic flow inside a nozzle and determine a 
proper wall contour so that no shock waves appear inside the nozzle. 

𝜃 + 𝜈 𝑀 = const = 𝐾− along 𝐶− 𝜃 − 𝜈 𝑀 = const = 𝐾+ along 𝐶+

𝜃 =
1

2
[ 𝐾− + 𝐾+ )] 𝜈 =

1

2
[ 𝐾− − 𝐾+ )]
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Supersonic Nozzle Design

• For the convergent section, there is no particular contour which gives better results than the others. Thus the 
design of this part of the nozzle is usually based on experience and industry best practices. 

• Let’s consider a 2D flow for simplicity, as shown on the next slide. The sonic line is located at the throat. 

• The limiting characteristic is such that any characteristic line originating downstream of this line does not intersect 
the sonic line. 

• Based on the calculations of the convergent profile, we know the flow properties in the throat region and thus we 
can use the limiting characteristic as the initial data line. 

• The diverging section is divided into two regions: the expansion section and straightening section. 

• Design problem: 

Design the wall contour for a converging-diverging nozzle to 
allow shock-free isentropic expansion of a gas from rest to a 
given supersonic Mach number at the exit.
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Supersonic Nozzle Design (cont.)
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Supersonic Nozzle Design (cont.)

• If we define 𝜃𝑤 as the angle between a tangent to the wall and the horizontal, then the section where 𝜃𝑤 is 
increasing is called the expansion section. This section ends at the point of 𝜃𝑤 = 𝜃𝑚𝑎𝑥. 

• Downstream from this point is the straightening section where 𝜃𝑤 decreases to zero at the nozzle exit. 

• The shape of the expansion section is arbitrary and is usually in the form of a circular arc of large radius.

• Therefore, for our analysis we know the flow properties along the limiting characteristic line and the slope at 
points 1, 5 and 8. Now we simply need to apply the method of characteristics to design the contour of the 
straightening section, i.e., from points 8 through 13. Points below the axis are simply the reflections of the 
points above the axis.

• It should be noted that the characteristic mesh sketched here is very coarse; in actual calculations the mesh 
should be much finer. 

• The method of characteristics is an exact solution of inviscid, nonlinear supersonic flow. However, in practice, 
there are numerical errors associated with the finite grid: the approximation of the characteristics mesh by 
straight-line segments between grid points is one such example. 

• In principle, the method of characteristics is truly exact only in the limit of an infinite number of characteristic 
lines. 
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Internal Points
• The calculation procedure consists of analyzing the flow at grid points which 

are the points of intersection of characteristic lines. 

• There can be two types of grid points: 

1. Internal Grid Points 

2. Wall Grid Points

• Lets first analyze the internal grid points as shown. We know the location and 
flow properties at points 1 and 2. 

• Point 3 is simply on the centerline. The 𝐶− characteristic and 𝐶+characteristic 
are coming from point 2 and 2’ respectively and are symmetric.

𝜃2 + 𝜈2 = const = 𝐾− 2 = 𝐾− 3 along 𝐶− 𝜃2′ − 𝜈2′ = const = 𝐾+ 2′ = 𝐾+ 3 along 𝐶+

𝜈3 = 𝐾− 3 = − 𝐾+ 3

• The constants along the given 𝐶− and 𝐶+ characteristics are the same and opposite 𝐾− 3 = − 𝐾+ 3. The flow 
angle 𝜃3 is zero since the point is on the centerline. Hence 𝜈3 can be calculated as: 

𝜃3 + 𝜈3 = const = 𝐾− 3 along 𝐶−
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Internal Points (cont.)

• Using 𝜃3 and 𝜈3, we can calculate the remaining flow properties: 

Obtain 𝑀3 using 𝜈3

Calculate 𝑝3 and 𝑇3 from 𝑀3 and 
previously known 𝑝0, 𝑇0

Using 𝑇3, Compute 𝑐3 = 𝛾𝑅𝑇3 and then 𝑉3 = 𝑀3𝑐3

𝐶−

𝐶+



14

Internal Points (cont.)

• Point 4 is located at the intersection of the 𝐶− characteristic and 
𝐶+characteristic through points 1 and 3 respectively. Therefore, we can say: 

• 𝐾_− and 𝐾_+ are constant along the given 𝐶− and 𝐶+characteristics, and at 
point 4 we can write: 

• Solving these two algebraic equations we obtain the following solution:

𝜃4 =
1

2
[ 𝐾− 1 + 𝐾+ 3)] 𝜈4 =

1

2
[ 𝐾− 1 − 𝐾+ 3)]

𝐶−

𝐶+

𝜃1 + 𝜈1 = const = 𝐾− 4 = 𝐾− 1 along 𝐶−

𝜃3 − 𝜈3 = const = 𝐾+ 4 = 𝐾+ 3 along 𝐶+

𝜃4 + 𝜈4 = 𝐾− 4 along 𝐶− 𝜃4 − 𝜈4 = 𝐾+ 4 along 𝐶+

• Using 𝜃4 and 𝜈4, we can calculate the remaining flow properties as done for point 3. 
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Wall Points

• Let's consider an internal point (4) which is close to the wall. The 𝐶+
characteristic through point 4 intersects the wall at point 5. 

• Assume the slope of the wall at point 5 is known, i.e., 𝜃5. Then we can obtain 
the flow properties at this wall point using the properties at point 4 as 𝐾+ is 
constant along the characteristic 𝐶+:

• Since we already know 𝜃5 and 𝐾+ 5, we can easily compute 𝜈5 and follow the 
procedure outlined in the previous slide to obtain the remaining flow 
variables. 

• Note that for both internal and wall points, our analysis started using the 
known properties at specific grid points. 

• Therefore, we begin our analysis from the initial data line and compute the 
flow properties by marching downstream along the grid defined by the 
intersection of characteristic lines. 

𝜃5 + 𝜈5 = const = 𝐾+ 4 = 𝐾+ 5 along 𝐶+

𝐶+
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Wall Points (cont.)

• Let's consider the wall points on the straightening section of the nozzle. These 
points are needed to define the shape of the nozzle profile. 

• The slope of the wall at points 12 and 13 is not known in this case. 

• However, we know that the straightening section of the nozzle is designed in 
such way that we have expansion wave cancellations at the wall. Hence, no 
characteristic line would be generated. 

• This means that the flow properties are constant along the characteristic lines 
𝐶+ coming from points 9 and 11. 

𝜃9 = 𝜃12 and  𝜈9 = 𝜈12

𝐶+
𝐶+

𝜃11 = 𝜃13 and  𝜈11 = 𝜈13

• To draw the nozzle profile, start from point 8 and draw a straight line at an angle of 
1

2
𝜃8 + 𝜃12 that intersects 

the 𝐶+ line from point 9. The intersection point is point 12. 

• Then, using an angle of 
1

2
𝜃12 + 𝜃13 , repeat the process from point 12 to intersect the 𝐶+ line from point 11 

and identify point 13. 

1

2
𝜃8 + 𝜃12
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Supersonic Nozzle Design
• The procedure outlined in the previous slide can be easily put into a computer program which can be used to 

compute the optimum profile for a supersonic nozzle. 

• The figure below represents the nozzle design for air flow (𝛾 = 1.414) at a given exit 𝑀 = 2.5 computed 
using 50 characteristic lines. 

𝐿𝑒𝑛𝑔𝑡ℎ

𝐻
𝑒
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Summary

• In this lesson we discussed the method of characteristics.

• We also showed how this method can be used to design the wall profile for a supersonic nozzle.

• The method of characteristics allows us to analyze the flow along the characteristic lines easily as the 

partial differential equations convert to ordinary differential equations along these lines. 

• In the next section, we will cover external compressible flows.




