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What is a Plane Wave?

A plane wave is a transverse electromagnetic wave that is constant, in both
magnitude and direction, over a plane normal to the direction of propagation

A transverse electromagnetic, or TEM, wave, is a wave where the electric field E and

magnetic field H are perpendicular both to one another, and to the direction of
propagation.

Direction of
propagation

Electric Field

Magnetic Field

A TEM wave




What is a Plane Wave?

A plane wave is a transverse electromagnetic wave that is constant, in both
magnitude and direction, over a plane normal to the direction of propagation

If you look at an electromagnetic wave on a plane normal to the direction of propagation...

A TEM wave may vary over the plane (in A plane wave is constant over that plane.
field direction or magnitude)




What is a Plane Wave?

A plane wave is a transverse electromagnetic wave that is constant, in both
magnitude and direction, over a plane normal to the direction of propagation

Consider: A TEM wave has the following electric

field: — .
E = Eoe—lzza; (phasor domain)

bz

= E,cos(wt — 2z)a,, (time domain)

from which we may observe that:

* The wave is propagating in the +z direction

* The electric field is oriented along the y-axis

* Since the wave is TEM, the magnetic field will be
oriented along the x-axis

 E, is the magnitude of the electric field vector.

Note: If E, does not vary as a function of x or y, this
equation represents a plane wave.



What is a Plane Wave?

Plane waves are mathematically convenient constructs we can use to derive
general principles about electromagnetic waves.

Notes:

Plane waves are simplified idealizations of
electromagnetic waves (no real wave is perfectly
constant over a plane).

Waves may often be approximated as plane waves with
great accuracy (as when far from the source).

Electromagnetic wave properties are often derived
with respect to plane waves, because of their
mathematical simplicity. However, the principles
derived from plane wave analysis are often
generalizable to all EM waves.




Intrinsic Impedance of Plane Waves

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.

Recall, the source-free wave equations for electric and magnetic fields were
given by:

VE —k?E =0
VZH — k*H = 0
which have plane-wave solutions of the form:
E= [E0+e‘jE'7 + Eo_e“%'?] d,

H

[H0+e—jk-r _I_ Ho_e+jk'rl ah

Ue

~ |

where we know that d,, a,, and k
form a right-handed triad: / >




Intrinsic Impedance of Plane Waves

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.

So, for a plane wave propagating in the + z-direction, with electric field oriented

along the x-axis, we have Direction of

propagation

E = [Ex+e_jkz + Ex_e'l'jkz]ax Electric Field

H = [Hy+e‘jkz + Hy_e+jkz]dy

Magnetic Field
But by Faraday’s Law, we also have:

Z
_ 1 _
H=——VXE
jou
ﬁ__[E + —]kZ Ex—e+jkz]a

WU y y
which we may equate to the expression for H above to obtain the following two
relations:

w w
E.& = k”H * Ex‘=—7“H




Intrinsic Impedance of Plane Waves

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.

Now we are ready to define a new term. The “Intrinsic Impedance” of a wave is
given by:

E,"  E _op  [E

H, k g

Or, in words,

intrinsic impedance =

Forward E Backward E \/ﬁ
Forward H  Backward H V¢

Note: in free space, :uo

No

= 3771




Intrinsic Impedance of Plane Waves

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.

Using the intrinsic impedance, if you’re told that you're dealing with a TEM wave,
and you know the electric field, you can write the magnetic field directly, and
vice versa.

Ex) If the electric field of a TEM wave is given by:

E=E,"e/*a, +E, e Ik%q,

what is its magnetic field?

Solution: x

Propagation is in +z, so by the right-hand rule, the x-component of the electric field
will contribute a y-component to the magnetic field. The y-component of the
electric field will contribute a negative x-component to the magnetic field. The
ratios are dictated by the characteristic impedance, so...
+ +
H =2 eikeg _Tx p-jkeg
| n



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a
plane wave propagating in free space...

Let’s look back again at the source-free wave equations:
VZE — k?E =0
VZH —k*H =0

Here, the wavenumber k is given by:

k = w+\/ue

from which we obtain that the phase velocity of the wave is:

1

JIE

In free space, this works out to:

1
= =3 x 108
N m/s

but in @ material, we must consider the possibility of u# u,, €% €,.



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a
plane wave propagating in free space...

The response of a material to an electromagnetic field is modeled using the
material properties of magnetic permeability (1) and electric permittivity (€). In
past modules, we have introduced the notation:

U= Urlo, € = €r€p

where u, is the “relative permeability” and €, is the “relative permittivity” of the
material.

Now we will expand this model using the following notation, which allows us to
account for dielectric losses in the material:

H = HUrlo

€ = € +je"



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a
plane wave propagating in free space...

e=¢ +je’

In this equation, the real part is the lossless permittivity, like we had before:

€' = €,.€,

The imaginary component accounts for dielectric losses, which are introduced by
conductivity (o) in the material according to the following relation:

EII=£
W

We will also define the loss tangent, as:

I

tand = — = ——
€  WELE,

0}




Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a
plane wave propagating in free space...

e=¢ +je’

This means that, to account for the possibility of losses, we must use the complex
propagation constant y, defined by:

y = jk = jo/p(e’ +je'") = a+ jB

Note that, here, a is the attenuation constant, and 3 is the lossless propagation
constant.

Let’s look at how this plays out in terms of a wave...



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a
plane wave propagating in free space...

A plane wave propagating in +x through a lossy medium, with electric field oriented
in z, is described by:

E=Ee Y*a,=E,e (@tiBxg = EF e %X iBXg

This is a sinusoidal function, according to e “/P*, that decays at a rate of e ~**.
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Polarization of Plane Waves

Polarization describes the time-varying orientation of the electric field.

The polarization of a plane wave is categorized according to the figure
traced by the tip of the electric field vector over time, on a fixed plane normal to
the direction of propagation.

All plane waves exhibit one of the following three categories of polarization:

1) Linear Polarization
2) Circular Polarization

3) Elliptical Polarization




Polarization of Plane Waves

To determine the polarization of a plane wave, perform the following steps:

1) Make sure you are looking at the time-domain representation of the electric field.
2) Choose a convenient observation plane normal to the direction of propagation.

3) Choose a moment in time, and plot the electric field vector on the observation
plane at that moment.

4) Determine how increasing time will change the electric field.
5) If the tip of the electric field traces out a line, the wave is linearly polarized. If it

will trace a circle, the wave is circularly polarized, and if it traces an ellipse, the
wave is elliptically polarized.

A Linear Trace A Circular Trace An Elliptical Trace



Linear Polarization

Linear Polarization occurs when the electric field varies in only a single direction.

For example, if a plane wave has an electric field given by:

E = E,cos(wt — 2x)a,

This electric field,
viewed on any plane
perpendicular to the
direction of
propagation, will vary
only up and down along
the z-axis

‘IIIIIIIIII



Linear Polarization

Linear Polarization occurs when the electric field varies in only a single direction.

E = E, cos(wt — 2x)a,

Notes: In order for a plane wave to exhibit linear polarization, it must have an
electric field that either

1) Varies in only a single direction

EX) E = E,cos(wt — 2x)a,

or

2) Consists of two orthogonal components that are out of
phase by some multiple of + 180°

Ex) E = Ey,cos(wt — 2x)a,+ E,cos(wt — 2x + nm)a,




Linear Polarization

Linear Polarization occurs when the electric field varies in only a single direction.

Notes: A linearly polarized wave may be further categorized according to the
orientation of the traced line. For example, this wave is linearly polarized
along the z-axis.

E = E, cos(wt — 2x)a,




Circular Polarization

Circular Polarization occurs when the tip of the electric field vector traverses a
circle on a plane normal to the direction of propagation.

For example, if a plane wave has an electric field given by:
T~ I~ 7-[ I~
E = E,cos(wt — 2x)a,+ E,cos(wt — 2x + E)az

7
[

The tip of the electric
field vector, viewed on
any plane perpendicular
to the direction of
propagation, will
traverse a circular path
as the wave propagates.




Circular Polarization

Circular Polarization occurs when the tip of the electric field vector traverses a
circle on a plane normal to the direction of propagation.

E = E, cos(wt — 2x)a,+ E,cos(wt — 2x + g)&}

Notes: In order for a plane wave to exhibit circular polarization,
1) It must consist of two orthogonal components

EX) E = E,cos(wt— 2x)a,+E,cos(wt — 2x + g)@

2) The two orthogonal components must be £90° out of phase

EX) E = E,cos(wt — 2x)a,+ E,cos(wt — 2x + g)fl}

3) The two orthogonal components must be equal in magnitude

Ex) E = E,cos(wt — 2x)a,+ E,cos(wt — 2x + g)&;




Circular Polarization

Circular Polarization occurs when the tip of the electric field vector traverses a
circle on a plane normal to the direction of propagation.

Notes: A circularly polarized wave may be further categorized according to the
handedness of its rotation. To determine handedness, point your right-hand
thumb in the direction of propagation; if your fingers curl in the direction of
field rotation, the wave is right-handed. If your fingers curl against the
direction of field rotation, the wave is left-handed. For example...

This wave, propagating in +x, is
left-handed.

This wave, propagating in +x, is
right-handed.



Elliptical Polarization

Elliptical Polarization occurs when the tip of the electric field vector traverses an
ellipse on a plane normal to the direction of propagation.

For example, if a plane wave has an electric field given by:

E = E cos(wt — 2x)a,+ %cos(wt — 2x + g)&}
4

The tip of the electric
field vector, viewed on
any plane perpendicular
to the direction of
propagation, will
traverse an elliptical
path as the wave
propagates.




Elliptical Polarization

Elliptical Polarization occurs when the tip of the electric field vector traverses an
ellipse on a plane normal to the direction of propagation.

E = E,cos(wt — 2x)a,+ %cos(wt — 2x + g)@

Notes: In order for a plane wave to exhibit elliptical polarization,
1) It must consist of two orthogonal components

Ex) E = E,cos(wt — 2x)d;+%cos(u)t —2x + g)d}

2) The two orthogonal components must be out of phase

EX) E = E,cos(wt — 2x)d}+%cos(oot —2x + g)c/l}

3) The wave must not fit the criteria for linear or circular polarization

Ex) E = E,cos(wt — 2x)a,+ %Cos(wt —2x + g)fl}




Elliptical Polarization

Elliptical Polarization occurs when the tip of the electric field vector traverses an
ellipse on a plane normal to the direction of propagation.

Notes: Like circularly polarized waves, elliptically polarized waves may be
categorized according to the handedness of their rotation.

This wave, propagating in +x, is This wave, propagating in +x, is
right-handed. left-handed.



Plane Waves at a Boundary

When a plane wave is incident upon a planar boundary between two media, the
resulting reflections and transmissions are governed by field boundary conditions.

Recall, at a boundary between two dielectrics:

Eit = Eyt
D1y — Doy = ps
_Bln = By _

Hy, — Hyy = J

These rules will govern the behavior of EM waves at a planar boundary.
We will consider this scenario in three cases — all cases of electromagnetic plane

waves impinging on a boundary between two dielectrics may be considered as a
linear sum of these three.



Plane Waves at a Boundary

Case 1: Normal Incidence

Suppose a plane wave Ei = E,;e~Y1Ya, is incident upon a planar boundary, at an
angle normal to the surface of the boundary:

Region 1 ZLRegion 2
€1, M1 y €20 M2

Hl ki Et&_ _)t
H

In this case, the incident electric and magnetic fields E; and H; are both perfectly
tangential to the boundary. Therefore, the transmitted and reflected electric and
magnetic fields will also be entirely tangential.



Plane Waves at a Boundary

Case 1: Normal Incidence

Region 1 ZI_)Region 2
€1, 1 v €2, Uy
E . E
Bk Kk
- UHI Cd
k [
—

Also, from the boundary condition

Hlt_HZt =0

we can write

From the boundary condition
Eit = Ep¢

we can write:

E; + r:Et

or:

E,je Vg, + E,.e?W1Va, = E, e )¥2Ya,

Hi + Hy = Ht
or:
& e_jYIyaZ — & e+jY13’dz —_ & e—jYZJ/aZ
M M 12




Plane Waves at a Boundary

Case 1: Normal Incidence

Region 1 ZI_)Region 2
ST ; €5, Uy
: H] E‘ th Et
—_ Ht
k [
H,

The two boxed equations on the previous slide may be rearranged to
obtain the normal-incidence reflection and transmission coefficients:

Eor Nz —n1 _Eor 2n;

F - = T =
" Ey na+m Eyi N2 + N1




Plane Waves at a Boundary

Snell’s Law

The next two cases will involve oblique incidence, so we will need to recall and use
Snell’'s Law. Snell’s Law gives the angles of reflected and transmitted rays at a dielectric

boundary, given the angle of the incident rays and the material properties of the two
dielectrics, as follows:

sin(6;) mnq
sin(6;) n,

Region 1 ZLRegion 2 0, = 0;
€1, 11 €y, Uy

Y

where n, and n, are the indices of refraction
for the two dielectrics, which may be
calculated from the relative permeability and
permittivity values as:

Ny = VUr1€r1 Ny = VHUr28&r2

Pay attention! These are the relative
permeability and permittivity values!




Plane Waves at a Boundary

Total Internal Reflection and Critical Angle

Note: as 6; increases, so does 0;. If 8, is sufficiently large (8,>90°), all the energy
will end up being reflected back into region 1. This is called total internal reflection. It
will only happen if ny > n, and 6; > 6.. Here, 8. is called the “critical angle,” and is

calculated by:
n
6. = sin! (—2>
ny

Region1l 7, Region 2 Region1 2z, Region 2
€1, Mg L. €2, H €1, 1 €2, U2
Y

General Case Total Internal Reflection



Plane Waves at a Boundary

Case 2: Oblique incidence, electric field tangential to boundary

Suppose a plane wave E; = Eoie‘jY1[ycos(ei)‘zsm(ei)]&x is incident upon a planar
boundary in the x-z plane, at an incident angle 6; to the surface of the boundary:

Region 1 ZLRegionz
€2,
y <2 )

€1, 1

In this case, the incident electric field E; is perfectly tangential to the boundary, but
the incident magnetic field H; has both a tangential component and a normal
component.



Plane Waves at a Boundary

Case 2: Oblique incidence, electric field tangential to boundary

Region 1 ZLRegion 2 | In this case, we can write:
S

y S22 =

El+E’l":Et

or:
E,;e~Yilycos(8)-zsin(:)]g

+E,, e~ Yal-ycos(®r)-zsin(61)] 5

=E, ;e —Y2[ycos(6¢)—zsin(6)] a,

And we can also write:

H; + Hr = Ht
or:
% e ~Y1lycos(8;)—zsin(6;)] [— sin(6;) a, — cos(6;) dz] - 4,
1
E .
+ =2 o=Y1[-ycos(8,)—zsin(6y)] [— sin(6,.) a,+ cos(6,) a,] - a,

N1

E .
_ 77_ot e~ Yalycos(6r)-zsin(6D][— sin(9,) @, — cos(6,) &,] - @,
2




Plane Waves at a Boundary

Case 2: Oblique incidence, electric field tangential to boundary

Region 1
€1, 1

ZLRegion
€2,
y €2 )

2

The two boxed equations on the previous slide may be rearranged, with
application of Snell’s Law, to obtain the oblique-incidence reflection and
transmission coefficients, for the case where the electric field is

perfectly tangential to the boundary:

Eor n2cos(6;) —nycos(6;)

[ = =
7 E,;  nycos(8;) + nicos(8y)

T =

Eot

% =1+4T, =

Eoi

2nzcos(6;)

n2cos(8;) + nycos(6;)




Plane Waves at a Boundary

Case 3: Obligue incidence, magnetic field tangential to boundary

Suppose a plane wave E; = Eoie‘jY1[yC°S(9i)‘ZSin(9i)][sin(@i) dy + cos(6;) &Z] is
incident upon a planar boundary in the x-z plane, at an incident angle 6; to the
surface of the boundary:

Region 1 ZLRegionz
€2,
y <2 U2

€1, H1

In this case, the incident magnetic field H; is perfectly tangential to the boundary,
but the incident electric field E; has both a tangential component and a normal
component.



Plane Waves at a Boundary

Case 3: Obligue incidence, magnetic field tangential to boundary

Region 1 ZLRegion 2 | In this case, we can write:
€1, Mg

€2, U2

' or: E;+E. =E,

E,ie Yalyeos(00-zsin(0][sin(0;) @, + cos(6;) a,] - @,

+ E e Yilmyeos(On)=zsin(®nl[ —sin(0,) &, + cos(6,) a,] - a,

And we can also write: = E e V2 [YCOS(Ht)—zsin(Bt)][Sin(et) a, + cos(6;) dz] + Oy
H +H,. =H,
or:
& e_Y1[YC05(9i)—ZSin(9i)]&x
51
— & e—Y1[—ycos(9r)—zsin(9r)]ax
51
— @ e—Yz [YCOS(Ht)—ZSin(Qt)]a‘x
n2




Plane Waves at a Boundary

Case 3: Obligue incidence, magnetic field tangential to boundary

Region 1 ZI_’Region 2
€1l €2, M2

Y

The two boxed equations on the previous slide may be rearranged, with
application of Snell’s Law, to obtain the oblique-incidence reflection and
transmission coefficients, for the case where the magnetic field is
perfectly tangential to the boundary:

I, — Eor  npcos(6;) — n2cos(6;) T = Eot _ 2nzcos(6;)
7 Ey  nicos(6;) + nzcos(6;) " Ey  ngcos(8y) + nycos(6;)




The Poynting Theorem

Electromagnetic waves carry energy. The Poynting Theorem gives us insight into
energy storage and transfer in the context of electromagnetics

Derivation of the Poynting Theorem:

— dB
VXE=—— (Faraday’s Law)

dt

. dp -
VXH=—+d (Ampere’s Law)
dt
so that:
H-[VxE|-E-[Vx 7] =7 [ Bl g%, ]
B dt dt

which can be rearranged, using vector identities, as:

T — dB = dD =
Ve [exH]|=-H - — - ——€-d

Note: we are using the script symbols E, %, ﬁ, D and J to specify the time-domain expressions of E, ﬁ,
B, D, and J, respectively.



The Poynting Theorem

Electromagnetic waves carry energy. The Poynting Theorem gives us insight into
energy storage and transfer in the context of electromagnetics

Derivation of the Poynting Theorem:

V-[ExH]=-H -L_5.22_F.]

dt dt
If we consider a region of volume V, contained by surface S, this can be
rewritten, using the divergence theorem, as:

= = = d U ,—2 &,—=2 —
i(Sx}f)-ds_—jV %(§|}f| +§|s|)—JV€-°l

This is the Poynting Theorem




The Poynting Theorem

But, what does it mean? Let’s look at a few of these pieces individually...

U — 2

5 |7'f| This is the energy stored in the magnetic fields in the volume V
£ =2

2 |€| This is the energy stored in the electric fields in the volume V

f (E X %) +dS This is the power per area leaving the volume through surface S
S

j c.d This is the power consumed by ohmic losses inside the volume V
14

So, the Poynting Theorem says that net power flow into a volume must either be
stored in the internal fields or consumed by ohmic losses.

Alternatively, the Poynting Theorem says that net power flow out of a volume
must be being released from internal fields

The Poynting Theorem is a statement of Conservation of Energy




The Poynting Vector

We will define the Poynting Vector as:

S=EXH

The vector S points in the direction of power flow, and has units of W/m?,
indicating the power flow density of the electromagnetic wave.

This is an expression of instantaneous power flow (both €and H depend on
time)

Notice the implied right-handed triad:
c

e
H

S

>




The Poynting Vector

It is sometimes more useful to consider the time-average power flow density. The
time-average Poynting vector is given by:

Fw =%Re{§xﬁ*}

where E and H are now in phasor form, and H"* indicates the complex conjugate
of H.

The vector Fw still points in the direction of power flow, and has units of W/m?,
indicating the power flow density of the electromagnetic wave.

This is an expression of the time-averaged power flow density.

This is still a right-handed triad:

E

e
H

Sq

A4S




