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What is a Plane Wave?
A plane wave is a transverse electromagnetic wave that is constant, in both 
magnitude and direction, over a plane normal to the direction of propagation

A transverse electromagnetic, or TEM, wave, is a wave where the electric field 𝐸 and 

magnetic field 𝐻 are perpendicular both to one another, and to the direction of 
propagation.

A TEM wave



What is a Plane Wave?
A plane wave is a transverse electromagnetic wave that is constant, in both 
magnitude and direction, over a plane normal to the direction of propagation

A TEM wave may vary over the plane (in 
field direction or magnitude)

A plane wave is constant over that plane.

If you look at an electromagnetic wave on a plane normal to the direction of propagation…



What is a Plane Wave?
A plane wave is a transverse electromagnetic wave that is constant, in both 
magnitude and direction, over a plane normal to the direction of propagation

𝐸 = 𝐸𝑜𝑒
−𝑗2𝑧ෞ𝑎𝑦

from which we may observe that:

• 𝐸𝑜 is the magnitude of the electric field vector. 

• The wave is propagating in the +z direction

Consider: A TEM wave has the following electric 
field:

• The electric field is oriented along the y-axis

z

y

Note: If 𝑬𝒐 does not vary as a function of x or y, this 
equation represents a plane wave.

• Since the wave is TEM, the magnetic field will be 
oriented along the x-axis

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑧)ෞ𝑎𝑦

(phasor domain)

(time domain)



What is a Plane Wave?
Plane waves are mathematically convenient constructs we can use to derive 
general principles about electromagnetic waves.

Notes:

Plane waves are simplified idealizations of 
electromagnetic waves (no real wave is perfectly 
constant over a plane).

Waves may often be approximated as plane waves with 
great accuracy (as when far from the source).

Electromagnetic wave properties are often derived 
with respect to plane waves, because of their 
mathematical simplicity.  However, the principles 
derived from plane wave analysis are often 
generalizable to all EM waves.



Intrinsic Impedance of Plane Waves
A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.

Recall, the source-free wave equations for electric and magnetic fields were 
given by:

∇2𝐸 − 𝑘2𝐸 = 0

which have plane-wave solutions of the form:

∇2𝐻 − 𝑘2𝐻 = 0

𝐸 = 𝐸𝑜
+𝑒−𝑗𝑘∙𝑟 + 𝐸𝑜

−𝑒+𝑗𝑘∙𝑟 ො𝑎𝑒

𝐻 = 𝐻𝑜
+𝑒−𝑗𝑘∙𝑟 + 𝐻𝑜

−𝑒+𝑗𝑘∙𝑟 ො𝑎ℎ

where we know that ො𝑎𝑒, ො𝑎ℎ, and 𝑘
form a right-handed triad: 

ො𝑎𝑒

ො𝑎ℎ

𝑘



Intrinsic Impedance of Plane Waves

So, for a plane wave propagating in the ± z-direction, with electric field oriented 
along the x-axis, we have

𝑦

𝑥 𝑧

𝐸 = 𝐸𝑥
+𝑒−𝑗𝑘𝑧 + 𝐸𝑥

−𝑒+𝑗𝑘𝑧 ො𝑎𝑥

𝐻 = 𝐻𝑦
+𝑒−𝑗𝑘𝑧 + 𝐻𝑦

−𝑒+𝑗𝑘𝑧 ො𝑎𝑦

But by Faraday’s Law, we also have:

𝐻 = −
1

𝑗𝜔𝜇
∇ × 𝐸

𝐻 =
𝑘

𝜔𝜇
𝐸𝑥

+𝑒−𝑗𝑘𝑧 − 𝐸𝑥
−𝑒+𝑗𝑘𝑧 ො𝑎𝑦

which we may equate to the expression for 𝐻 above to obtain the following two 
relations:

𝐸𝑥
+ =

𝜔𝜇

𝑘
𝐻𝑦

+ 𝐸𝑥
− = −

𝜔𝜇

𝑘
𝐻𝑦

−

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.



Intrinsic Impedance of Plane Waves

Now we are ready to define a new term.  The “Intrinsic Impedance” of a wave is 
given by:

𝜂 =
𝐸𝑥

+

𝐻𝑦
+ = −

𝐸𝑥
−

𝐻𝑦
− =

𝜔𝜇

𝑘
=

𝜇

𝜀

Or, in words,

intrinsic impedance =
Forward E

Forward H
= −

Backward E

Backward H
=

μ

ε

Note: in free space, 
𝜂𝑜 =

𝜇𝑜
𝜀𝑜

= 377Ω

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.



Intrinsic Impedance of Plane Waves

Using the intrinsic impedance, if you’re told that you’re dealing with a TEM wave, 
and you know the electric field, you can write the magnetic field directly, and 
vice versa.

Ex) If the electric field of a TEM wave is given by:

what is its magnetic field?

𝐸 = 𝐸𝑥
+𝑒−𝑗𝑘𝑧 ො𝑎𝑥 + 𝐸𝑦

+𝑒−𝑗𝑘𝑧 ො𝑎𝑦

Solution:

Propagation is in +z, so by the right-hand rule, the x-component of the electric field 
will contribute a y-component to the magnetic field.  The y-component of the 
electric field will contribute a negative x-component to the magnetic field.  The 
ratios are dictated by the characteristic impedance, so…

𝐻 =
𝐸𝑦

+

𝜂
𝑒−𝑗𝑘𝑧 ො𝑎𝑥 −

𝐸𝑥
+

𝜂
𝑒−𝑗𝑘𝑧 ො𝑎𝑦

𝑧

𝑥

𝑦

𝐸

𝐻𝑘

A plane wave has a fixed ratio of electric field magnitude to magnetic field magnitude.



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a 
plane wave propagating in free space…

Let’s look back again at the source-free wave equations:

Here, the wavenumber k is given by:

𝑘 = 𝜔 𝜇𝜖

∇2𝐸 − 𝑘2𝐸 = 0

∇2𝐻 − 𝑘2𝐻 = 0

from which we obtain that the phase velocity of the wave is:

𝑣𝑝ℎ =
1

𝜇𝜖

In free space, this works out to:

𝑣𝑝ℎ =
1

𝜇𝑜𝜖𝑜
= 3 × 108 𝑚/𝑠

but in a material, we must consider the possibility of 𝜇≠ 𝜇𝑜, 𝜖≠ 𝜖𝑜.



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a 
plane wave propagating in free space…

The response of a material to an electromagnetic field is modeled using the 
material properties of magnetic permeability (𝜇) and electric permittivity (𝜖).  In 
past modules, we have introduced the notation:

where 𝜇𝑟 is the “relative permeability” and 𝜖𝑟 is the “relative permittivity” of the 
material. 

Now we will expand this model using the following notation, which allows us to 
account for dielectric losses in the material:

𝜇 = 𝜇𝑟𝜇𝑜, 𝜖 = 𝜖𝑟𝜖𝑜

𝜇 = 𝜇𝑟𝜇𝑜

𝜖 = 𝜖′+𝑗𝜖′′



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a 
plane wave propagating in free space…

In this equation, the real part is the lossless permittivity, like we had before:

𝜖 = 𝜖′ + 𝑗𝜖′′

𝜖′′ =
𝜎

𝜔

The imaginary component accounts for dielectric losses, which are introduced by 
conductivity (𝜎) in the material according to the following relation:

𝜖′ = 𝜖𝑟𝜖𝑜

We will also define the loss tangent, as:

tan δ =
𝜖′′

𝜖′
=

𝜎

𝜔𝜖𝑟𝜖𝑜



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a 
plane wave propagating in free space…

This means that, to account for the possibility of losses, we must use the complex 
propagation constant γ, defined by:

𝜖 = 𝜖′ + 𝑗𝜖′′

γ = 𝑗𝑘 = 𝑗𝜔 𝜇(𝜖′ + 𝑗𝜖′′) = α + 𝑗β

Note that, here, α is the attenuation constant, and β is the lossless propagation 
constant.

Let’s look at how this plays out in terms of a wave…



Material Interaction with Plane Waves

A plane wave propagating in a dielectric will have different properties than a 
plane wave propagating in free space…

A plane wave propagating in +x through a lossy medium, with electric field oriented 
in z, is described by:

This is a sinusoidal function, according to 𝑒−𝑗β𝑥, that decays at a rate of 𝑒−α𝑥.  

𝐸 = 𝐸𝑜𝑒
−γ𝑥 ො𝑎𝑧 = 𝐸𝑜𝑒

−(α+𝑗β)𝑥 ො𝑎𝑧 = 𝐸𝑜 𝑒
−α𝑥𝑒−𝑗β𝑥 ො𝑎𝑧

𝑒−α𝑥

𝑒−𝑗β𝑥

𝑒−α𝑥𝑒−𝑗β𝑥 𝜆 =
2𝜋

𝛽



Polarization of Plane Waves

Polarization describes the time-varying orientation of the electric field.

The polarization of a plane wave is categorized according to the figure 
traced by the tip of the electric field vector over time, on a fixed plane normal to 
the direction of propagation.

All plane waves exhibit one of the following three categories of polarization:

1) Linear Polarization

2) Circular Polarization

3) Elliptical Polarization



Polarization of Plane Waves

To determine the polarization of a plane wave, perform the following steps:

1) Make sure you are looking at the time-domain representation of the electric field.

2) Choose a convenient observation plane normal to the direction of propagation.

3) Choose a moment in time, and plot the electric field vector on the observation 
plane at that moment.

4) Determine how increasing time will change the electric field.

5) If the tip of the electric field traces out a line, the wave is linearly polarized.  If it 
will trace a circle, the wave is circularly polarized, and if it traces an ellipse, the 
wave is elliptically polarized.

A Linear Trace A Circular Trace An Elliptical Trace



Linear Polarization

Linear Polarization occurs when the electric field varies in only a single direction.

For example, if a plane wave has an electric field given by:

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑧

This electric field, 
viewed on any plane 
perpendicular to the 
direction of 
propagation, will vary 
only up and down along 
the z-axis



Ex)

Ex)

Linear Polarization

Linear Polarization occurs when the electric field varies in only a single direction.

Notes: In order for a plane wave to exhibit linear polarization, it must have an 
electric field that either

1) Varies in only a single direction

2) Consists of two orthogonal components that are out of 
phase by some multiple of ± 180o

or

𝐸 = 𝐸𝑧cos(ω𝑡 − 2𝑥)ෞ𝑎𝑧

𝐸 = 𝐸𝑦cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 𝐸𝑧cos(ω𝑡 − 2𝑥 + 𝑛𝜋)ෞ𝑎𝑧

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑧



Linear Polarization

Linear Polarization occurs when the electric field varies in only a single direction.

Notes: A linearly polarized wave may be further categorized according to the 
orientation of the traced line.  For example, this wave is linearly polarized 
along the z-axis.

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑧



Circular Polarization

Circular Polarization occurs when the tip of the electric field vector traverses a 
circle on a plane normal to the direction of propagation.

For example, if a plane wave has an electric field given by:

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 𝐸𝑜cos(ω𝑡 − 2𝑥 +
𝜋

2
)ෞ𝑎𝑧

The tip of the electric 
field vector, viewed on 
any plane perpendicular 
to the direction of 
propagation, will 
traverse a circular path 
as the wave propagates.



Ex)

Ex)

Ex)

Circular Polarization

Circular Polarization occurs when the tip of the electric field vector traverses a 
circle on a plane normal to the direction of propagation.

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 𝐸𝑜cos(ω𝑡 − 2𝑥 +
𝜋

2
)ෞ𝑎𝑧

Notes: In order for a plane wave to exhibit circular polarization,

1) It must consist of two orthogonal components

2) The two orthogonal components must be ±90o out of phase

3) The two orthogonal components must be equal in magnitude

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 𝐸𝑜cos(ω𝑡 − 2𝑥 +
𝜋

2
)ෞ𝑎𝑧

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 𝐸𝑜cos(ω𝑡 − 2𝑥 +
𝜋

2
)ෞ𝑎𝑧

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 𝐸𝑜cos(ω𝑡 − 2𝑥 +
𝜋

2
)ෞ𝑎𝑧



Circular Polarization

Notes: A circularly polarized wave may be further categorized according to the 
handedness of its rotation.  To determine handedness, point your right-hand 
thumb in the direction of propagation; if your fingers curl in the direction of 
field rotation, the wave is right-handed.  If your fingers curl against the 
direction of field rotation, the wave is left-handed.  For example…

Circular Polarization occurs when the tip of the electric field vector traverses a 
circle on a plane normal to the direction of propagation.

This wave, propagating in +x, is 
right-handed.

This wave, propagating in +x, is 
left-handed.



Elliptical Polarization

Elliptical Polarization occurs when the tip of the electric field vector traverses an 
ellipse on a plane normal to the direction of propagation.

For example, if a plane wave has an electric field given by:

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 
𝐸𝑜

2
cos(ω𝑡 − 2𝑥 +

𝜋

2
)ෞ𝑎𝑧

The tip of the electric 
field vector, viewed on 
any plane perpendicular 
to the direction of 
propagation, will 
traverse an elliptical 
path as the wave 
propagates.



Ex)

Ex)

Ex)

Elliptical Polarization

Elliptical Polarization occurs when the tip of the electric field vector traverses an 
ellipse on a plane normal to the direction of propagation.

Notes: In order for a plane wave to exhibit elliptical polarization,

1) It must consist of two orthogonal components

2) The two orthogonal components must be out of phase

3) The wave must not fit the criteria for linear or circular polarization

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 
𝐸𝑜

2
cos(ω𝑡 − 2𝑥 +

𝜋

2
)ෞ𝑎𝑧

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 
𝐸𝑜

2
cos(ω𝑡 − 2𝑥 +

𝜋

2
)ෞ𝑎𝑧

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 
𝐸𝑜

2
cos(ω𝑡 − 2𝑥 +

𝜋

2
)ෞ𝑎𝑧

𝐸 = 𝐸𝑜cos(ω𝑡 − 2𝑥)ෞ𝑎𝑦+ 
𝐸𝑜

2
cos(ω𝑡 − 2𝑥 +

𝜋

2
)ෞ𝑎𝑧



Notes: Like circularly polarized waves, elliptically polarized waves may be 
categorized according to the handedness of their rotation.

This wave, propagating in +x, is 
right-handed.

This wave, propagating in +x, is 
left-handed.

Elliptical Polarization

Elliptical Polarization occurs when the tip of the electric field vector traverses an 
ellipse on a plane normal to the direction of propagation.



Plane Waves at a Boundary

When a plane wave is incident upon a planar boundary between two media, the 
resulting reflections and transmissions are governed by field boundary conditions.

Recall, at a boundary between two dielectrics:

𝐸1𝑡 = 𝐸2𝑡
𝐷1𝑛 − 𝐷2𝑛 = ρ𝑠
𝐵1𝑛 = 𝐵2𝑛

ഥ𝐻1𝑡 − ഥ𝐻2𝑡 = ҧ𝐽𝑠

These rules will govern the behavior of EM waves at a planar boundary.
We will consider this scenario in three cases – all cases of electromagnetic plane 
waves impinging on a boundary between two dielectrics may be considered as a 
linear sum of these three.



Plane Waves at a Boundary

Case 1: Normal Incidence

Suppose a plane wave 𝐸𝑖 = 𝐸𝑜𝑖𝑒
−γ1𝑦 ො𝑎𝑧 is incident upon a planar boundary, at an 

angle normal to the surface of the boundary:

In this case, the incident electric and magnetic fields ത𝐸𝑖 and ഥ𝐻𝑖 are both perfectly 
tangential to the boundary.  Therefore, the transmitted and reflected electric and 
magnetic fields will also be entirely tangential.



Plane Waves at a Boundary

Case 1: Normal Incidence
From the boundary condition

ഥ𝐻1𝑡 − ഥ𝐻2𝑡 = 0

𝐸1𝑡 = 𝐸2𝑡

we can write:

ത𝐸𝑖 + ത𝐸𝑟 = ത𝐸𝑡

𝐸𝑜𝑖𝑒
−jγ1𝑦 ො𝑎𝑧 + 𝐸𝑜𝑟𝑒

+jγ1𝑦 ො𝑎𝑧 = 𝐸𝑜𝑡𝑒
−jγ2𝑦 ො𝑎𝑧

or:

Also, from the boundary condition

we can write

ഥ𝐻𝑖 + ഥ𝐻𝑟 = ഥ𝐻𝑡

𝐸𝑜𝑖
𝜂1

𝑒−jγ1𝑦 ො𝑎𝑧 −
𝐸𝑜𝑟
𝜂1

𝑒+jγ1𝑦 ො𝑎𝑧 =
𝐸𝑜𝑡
𝜂2

𝑒−jγ2𝑦 ො𝑎𝑧

or:



Plane Waves at a Boundary

Case 1: Normal Incidence

The two boxed equations on the previous slide may be rearranged to 
obtain the normal-incidence reflection and transmission coefficients:

Γ𝑛 =
𝐸𝑜𝑟
𝐸𝑜𝑖

=
η2 − η1
η2 + η1

𝜏𝑛 =
𝐸𝑜𝑡
𝐸𝑜𝑖

= 1 + Γ𝑛 =
2η2

η2 + η1



Plane Waves at a Boundary

Snell’s Law

The next two cases will involve oblique incidence, so we will need to recall and use 
Snell’s Law.  Snell’s Law gives the angles of reflected and transmitted rays at a dielectric 
boundary, given the angle of the incident rays and the material properties of the two 
dielectrics, as follows: 

𝜃𝑟 = 𝜃𝑖
sin(𝜃𝑡)

sin(𝜃𝑖)
=
𝑛1
𝑛2

where n1 and n2 are the indices of refraction
for the two dielectrics, which may be 
calculated from the relative permeability and 
permittivity values as:

𝑛1 = 𝜇𝑟1𝜀𝑟1 𝑛2 = 𝜇𝑟2𝜀𝑟2

Pay attention!  These are the relative
permeability and permittivity values!



Plane Waves at a Boundary

Total Internal Reflection and Critical Angle

Note: as 𝜃𝑖 increases, so does 𝜃𝑡.  If 𝜃𝑡 is sufficiently large (𝜃𝑡>90o), all the energy 
will end up being reflected back into region 1.  This is called total internal reflection.  It 
will only happen if 𝑛1 > 𝑛2 and 𝜃𝑖 > 𝜃𝑐.  Here, 𝜃𝑐 is called the “critical angle,” and is 
calculated by:

𝜃𝑐 = sin−1
𝑛2
𝑛1

General Case Total Internal Reflection



Plane Waves at a Boundary

Case 2: Oblique incidence, electric field tangential to boundary

Suppose a plane wave 𝐸𝑖 = 𝐸𝑜𝑖𝑒
−jγ1[ycos 𝜃𝑖 −zsin 𝜃𝑖 ] ො𝑎𝑥 is incident upon a planar 

boundary in the x-z plane, at an incident angle 𝜃𝑖 to the surface of the boundary:

In this case, the incident electric field ത𝐸𝑖 is perfectly tangential to the boundary, but 
the incident magnetic field ഥ𝐻𝑖 has both a tangential component and a normal 
component.



Plane Waves at a Boundary

Case 2: Oblique incidence, electric field tangential to boundary

In this case, we can write:

ത𝐸𝑖 + ത𝐸𝑟 = ത𝐸𝑡

𝐸𝑜𝑖𝑒
−γ1[ycos 𝜃𝑖 −zsin 𝜃𝑖 ] ො𝑎𝑥

+𝐸𝑜𝑟𝑒
−γ1[−ycos 𝜃𝑟 −zsin 𝜃𝑟 ] ො𝑎𝑥

= 𝐸𝑜𝑡𝑒
−γ2[ycos 𝜃𝑡 −zsin 𝜃𝑡 ] ො𝑎𝑥

or:

ഥ𝐻𝑖 + ഥ𝐻𝑟 = ഥ𝐻𝑡

And we can also write:

𝐸𝑜𝑖

𝜂1
𝑒−γ1[ycos 𝜃𝑖 −zsin 𝜃𝑖 ] −sin 𝜃𝑖 ො𝑎𝑦 − cos 𝜃𝑖 ො𝑎𝑧 ∙ ො𝑎𝑧

+
𝐸𝑜𝑟
𝜂1

𝑒−γ1[−ycos 𝜃𝑟 −zsin 𝜃𝑟 ][− sin 𝜃𝑟 ො𝑎𝑦+cos 𝜃𝑟 ො𝑎𝑧] ∙ ො𝑎𝑧

=
𝐸𝑜𝑡
𝜂2

𝑒−γ2[ycos 𝜃𝑡 −zsin 𝜃𝑡 ][− sin 𝜃𝑡 ො𝑎𝑦 − cos 𝜃𝑡 ො𝑎𝑧] ∙ ො𝑎𝑧

or:



Plane Waves at a Boundary

The two boxed equations on the previous slide may be rearranged, with 
application of Snell’s Law, to obtain the oblique-incidence reflection and 
transmission coefficients, for the case where the electric field is 
perfectly tangential to the boundary:

Γ𝐸 =
𝐸𝑜𝑟
𝐸𝑜𝑖

=
η2cos(𝜃𝑖) − η1cos(𝜃𝑡)

η2cos(𝜃𝑖) + η1cos(𝜃𝑡)
𝜏𝐸 =

𝐸𝑜𝑡
𝐸𝑜𝑖

= 1 + Γ𝑛 =
2η2cos(𝜃𝑖)

η2cos(𝜃𝑖) + η1cos(𝜃𝑡)

Case 2: Oblique incidence, electric field tangential to boundary



Plane Waves at a Boundary

Suppose a plane wave 𝐸𝑖 = 𝐸𝑜𝑖𝑒
−jγ1[ycos 𝜃𝑖 −zsin 𝜃𝑖 ] sin 𝜃𝑖 ො𝑎𝑦 + cos 𝜃𝑖 ො𝑎𝑧 is 

incident upon a planar boundary in the x-z plane, at an incident angle 𝜃𝑖 to the 
surface of the boundary:

In this case, the incident magnetic field ഥ𝐻𝑖 is perfectly tangential to the boundary, 
but the incident electric field ത𝐸𝑖 has both a tangential component and a normal 
component.

Case 3: Oblique incidence, magnetic field tangential to boundary



Plane Waves at a Boundary

Case 3: Oblique incidence, magnetic field tangential to boundary

In this case, we can write:

ത𝐸𝑖 + ത𝐸𝑟 = ത𝐸𝑡

𝐸𝑜𝑖𝑒
−γ1[ycos 𝜃𝑖 −zsin 𝜃𝑖 ] sin 𝜃𝑖 ො𝑎𝑦 + cos 𝜃𝑖 ො𝑎𝑧 ∙ ො𝑎𝑧

+ 𝐸𝑜𝑟𝑒
−γ1[−ycos 𝜃𝑟 −zsin 𝜃𝑟 ] −sin 𝜃𝑟 ො𝑎𝑦 + cos 𝜃𝑟 ො𝑎𝑧 ∙ ො𝑎𝑧

=  𝐸𝑜𝑡𝑒
−γ2[ycos 𝜃𝑡 −zsin 𝜃𝑡 ] sin 𝜃𝑡 ො𝑎𝑦 + cos 𝜃𝑡 ො𝑎𝑧 ∙ ො𝑎𝑧

or:

ഥ𝐻𝑖 + ഥ𝐻𝑟 = ഥ𝐻𝑡

And we can also write:

𝐸𝑜𝑖
𝜂1

𝑒−γ1[ycos 𝜃𝑖 −zsin 𝜃𝑖 ] ො𝑎𝑥

−
𝐸𝑜𝑟
𝜂1

𝑒−γ1[−ycos 𝜃𝑟 −zsin 𝜃𝑟 ] ො𝑎𝑥

=
𝐸𝑜𝑡
𝜂2

𝑒−γ2[ycos 𝜃𝑡 −zsin 𝜃𝑡 ] ො𝑎𝑥

or:



Plane Waves at a Boundary

The two boxed equations on the previous slide may be rearranged, with 
application of Snell’s Law, to obtain the oblique-incidence reflection and 
transmission coefficients, for the case where the magnetic field is 
perfectly tangential to the boundary:

Γ𝐻 =
𝐸𝑜𝑟
𝐸𝑜𝑖

=
η1cos(𝜃𝑖) − η2cos(𝜃𝑡)

η1cos(𝜃𝑖) + η2cos(𝜃𝑡)
𝜏𝐻 =

𝐸𝑜𝑡
𝐸𝑜𝑖

=
2η2cos(𝜃𝑖)

η2cos(𝜃𝑡) + η1cos(𝜃𝑖)

Case 3: Oblique incidence, magnetic field tangential to boundary



The Poynting Theorem
Electromagnetic waves carry energy. The Poynting Theorem gives us insight into 
energy storage and transfer in the context of electromagnetics

Derivation of the Poynting Theorem:

(Faraday’s Law)

(Ampere’s Law)

∇ × ℇ = −
𝑑ℬ

𝑑𝑡

∇ ×ℋ =
𝑑Ɗ

𝑑𝑡
+ Ʝ

𝐻 ∙ ∇ × ℇ − ℇ ∙ ∇ ×ℋ = ℋ ∙ −
𝑑ℬ

𝑑𝑡
− ℇ ∙

𝑑Ɗ

𝑑𝑡
+ Ʝ

∇ ∙ ℇ ×ℋ = −ℋ ∙
𝑑ℬ

𝑑𝑡
− ℇ ∙

𝑑Ɗ
𝑑𝑡

− ℇ ∙ Ʝ

so that:

which can be rearranged, using vector identities, as:

𝑁𝑜𝑡𝑒: 𝑤𝑒 𝑎𝑟𝑒 𝑢𝑠𝑖𝑛𝑔 𝑡ℎ𝑒 𝑠𝑐𝑟𝑖𝑝𝑡 𝑠𝑦𝑚𝑏𝑜𝑙𝑠 ℇ,ℋ, ℬ, Ɗ and Ʝ to specify the time-domain expressions of 𝐸, 𝐻, 

𝐵, 𝐷, and 𝐽, respectively.



The Poynting Theorem
Electromagnetic waves carry energy. The Poynting Theorem gives us insight into 
energy storage and transfer in the context of electromagnetics

Derivation of the Poynting Theorem:

∇ ∙ ℇ ×ℋ = −ℋ ∙
𝑑ℬ

𝑑𝑡
− ℇ ∙

𝑑Ɗ
𝑑𝑡

− ℇ ∙ Ʝ

If we consider a region of volume V, contained by surface S, this can be 
rewritten, using the divergence theorem, as:

ර
𝑆

ℇ ×ℋ ∙ 𝑑𝑆 = −න
𝑉

𝑑

𝑑𝑡

𝜇

2
ℋ

2
+
𝜀

2
ℇ

2
−න

𝑉

ℇ ∙ Ʝ

This is the Poynting Theorem



The Poynting Theorem
But, what does it mean?  Let’s look at a few of these pieces individually…

This is the power consumed by ohmic losses inside the volume V

𝜇

2
ℋ

2
This is the energy stored in the magnetic fields in the volume V

𝜀

2
ℇ

2
This is the energy stored in the electric fields in the volume V

ර
𝑆

ℇ ×ℋ ∙ 𝑑𝑆 This is the power per area leaving the volume through surface S

න
𝑉

ℇ ∙ Ʝ

So, the Poynting Theorem says that net power flow into a volume must either be 
stored in the internal fields or consumed by ohmic losses.

Alternatively, the Poynting Theorem says that net power flow out of a volume 
must be being released from internal fields

The Poynting Theorem is a statement of Conservation of Energy



The Poynting Vector

We will define the Poynting Vector as:

𝑆 = ℇ ×ℋ

The vector 𝑆 points in the direction of power flow, and has units of W/m2, 
indicating the power flow density of the electromagnetic wave.  

This is an expression of instantaneous power flow (both ℇ and ℋ depend on 
time)

Notice the implied right-handed triad:

ℇ

ℋ

𝑆



The Poynting Vector

It is sometimes more useful to consider the time-average power flow density.  The 
time-average Poynting vector is given by:

𝑆𝑎𝑣 =
1

2
ℛ𝑒 𝐸 × 𝐻

∗

The vector 𝑆𝑎𝑣 still points in the direction of power flow, and has units of W/m2, 
indicating the power flow density of the electromagnetic wave.  

This is an expression of the time-averaged power flow density.

where 𝐸 and 𝐻 are now in phasor form, and 𝐻* indicates the complex conjugate 

of 𝐻.

This is still a right-handed triad:

𝐸

𝐻

𝑆𝑎𝑣


